

Advanced Manufacturing R&D

Energy storage

Battery R&D Motivation

5 BMF/MDF tour AlChE - Sept 2013 - Claus Daniel

SOAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

ORNL is addressing two problems: 1. Batteries not being manufactured in the U.S. 2. Batteries not lasting long enough or performing well enough 90% Work with U.S. battery 80% manufacturers together to 70% □ Others 60% **■** China make them competitive with 50% 🗆 Ko rea their U.S. operations 40% 🖪 Japan 30% 20% 10% 01CY 04CY Study degradation mechanisms and develop new materials and concepts for batteries 75.00 4 5 Calendar Months OAK RIDGE NATIONAL LABORATORY

DOE Battery Manufacturing

R&D Facility

funded by DOE Vehicle Technologies Office and Advanced Manufacturing Office

Oak Ridge National Laboratory's newest energy storage research facility is the nation's largest open access battery manufacturing R&D facility and will assist manufacturers in satisfying the demand for hybrid-electric and electric vehicles that are safe, affordable, and go the extra mile.

- •Pouch cells of up to 66x99x12mm and 6Ah
- •Focus on manufacturing R&D, drying, alternative heating technologies, solvent less processing, alternative assembly methods, new cutting, materials handling, and filling methods.
- Production yield issues

It features

- •700 sqft dry space with <0.5% R.H.
- •700 sqft adjustable 1-15% R.H.
- Located in manufacturing R&D park together with additive manufacturing, roomtemperature materials synthesis, roll-to-roll processing, direct powder feed rolling, robotics R&D
- •In easy to access off-site location specifically designed for industrial collaborations.

9. BMEMDE tour AIChE - Sept 2013 - Claus Danie

Aqueous electrode processing for lithium ion batteries US Patent pending 2013/0108776 A1

- Elimination of toxic organic solvents
 - Organic solvent free processing
 - Near theoretical capacity cycling
 - Extended cycle life
- Reduction of processing cost for electrodes
 - Aqueous processing via slot-die coating could reduce electrode coating cost by up to 75% and eliminate expensive, toxic NMP solvent.
 - Estimated 20% pack cost reduction.

US Patent pending US 2013/0108776 A1, pub. May 2, 2013; J Power Sources, 196, 2452–2460 (2011); J Electrochem Soc, 159, A1152–A1157 (2012); Langmuir, 28, 3783–3790 (2012); J Electrochem Soc, 160, A201–A206 (2013); J Coloid Interf Sci, Under Review, 2013

SOAK RIDGE NATIONAL LABORATORY

10 BMF/MDF tour AlChE - Sept 2013 - Claus Daniel

Aqueous electrode processing for lithium ion batteries US Patent pending 2013/0108776 A1 - Control of dispersion chemistry - Surface charges - Mixing protocols - Water removal US Patent pending US 2013/0108776 A1, pub. May 2, 2013-J Power Sources, 196, 2452-9450 (2011). J Electrochem Soc. 150, A152-A1157 (2012); Largmain, 28, 3783-3790 (2012); J Electrochem Soc. 160, A201-A206 (2013); J Colloid Irieri So., Under Revolve, 2013

Industrial partners with active battery projects in collaboration with ORNL

13 BMF/MDF tour AlChE - Sept 2013 - Claus Daniel

Advanced Manufacturing

SOAK RIDGE NATIONAL LABORATORY

Manufacturing matters

- 12% of U.S. GDP
- 12 million U.S. jobs
- 60% of U.S. engineering and science jobs
- 57% of U.S. Exports
- Nearly 20% of the world's manufactured value added

OAK RIDGE NATIONAL LABORATORY

15 BMF/MDF tour AlChe – Sept 2013 – Claus Daniel

We are focusing ORNL resources to support manufacturing initiative

- · Manufacturing and materials R&D to:
 - Reduce the energy intensity of U.S. industry
 - Support development of new products
 - Strengthen our nation's competitiveness and economic vitality
- Leveraging ORNL's distinctive core capabilities
 - Advanced materials
 - Advanced characterization
 - Neutron scattering
 - High-performance computing

Manufacturing Demonstration Facility

(MDF): a multidisciplinary DOEfunded facility dedicated to demonstration of next-generation materials and manufacturing technologies for advancing the US industrial economy

www.ornl.gov/manufacturing

OAK RIDGE NATIONAL LABORATORY

16 BMF/MDF tour AIChE - Sept 2013 - Claus Dani

ORNL's MDF is primarily focused in two key areas— additive manufacturing and

Additive Manufacturing

Manufacturing Demonstration Face 6 Polymer

7 Metal Machines

Electron Beam Melting

- Developing in-situ characterization, feedback and control
- Precision melting of powder materials
- Processing of complex geometries not possible through machining

Ultrasonic Additive Manufacturing

- Simultaneous additive and subtractive process for manufacturing complex geometries
- Solid-state process allows embedding of optical fibers and sensors

Laser Metal

- Site-specific material addition
- Application of advanced coating materials for corrosion and wear resistance
- Repair of dies, punches, turbines, etc.

Fused Deposition Modeling

- Development of high-strength composite materials for industrial applications
- Precision deposition of thermoplastic materials

Working with AM equipment providers to develop high-performance materials, low-cost feedstocks, processing techniques and in-situ characterization and controls to enable broad dissemination of technologies

OAK RIDGE NATIONAL LABORATORY

Additive Manufacturing (AM)

Leveraging key resources at ORNL to accelerate technology implementation

- Developing advanced materials
 - Titanium alloys, Ni superalloys, stainless and ultra highsteels
 - High-strength, carbon-reinforced polymers
- · Implementing advanced controls
 - In-situ feedback and control for rapid certification and quality control
- Understanding material properties and geometric accuracy (advanced characterization)
- Exploring next-generation systems to overcome technology barriers for manufacturing
 - Bigger, Faster, Cheaper
 - Integrating materials, equipment and component suppliers with end users to develop and evolve the supply chain

OAK RIDGE NATIONAL LABORATORY

19 BMF/MDF tour AlChE - Sept 2013 - Claus Daniel

Neutron characterization of AM

- Successful Inter planer spacing measurements on complex geometry
- Developing capabilities for residual stress mapping
- In-situ measurement during processing, HT, mechanical testing

Residual Stress Measurements

OAK RIDGE NATIONAL LABORATORY

20 BMF/MDF tour AlChE - Sept 2013 - Claus Danie

Polymer Additive Manufacturing

Three focus areas:

- In-situ characterization and control
 - Thermography to understand impact of temperature variations in the oven and head on part quality
 - · In-situ vision system for tip and part monitoring
- 2. Development of high strength materials
 - Target is specific strength exceeding 110 MN-m/g (6061-T6)
 - Multiple materials under investigation
 - Primospire 250, CF reinforced PEEK, PAEK, Nylon 66
- Increasing z-strength to achieve isotropic mechanical properties
 - Exploring impact of magnetic field processing on deposition of filled materials, z-dithering, and active flow control

21 BMF/MDF tour AlChE - Sept 2013 - Claus Danie

Large-Scale, Out-of-the-oven Additive Manufacturing

- Collaboration between ORNL, Lockheed Martin and Equipment Manufacturer
 - Pelletized feed of four separate materials
 - Research focus includes
 - · Materials low CTE, high strength materials
 - Deposition new methods of deposition and control
 - Multiple-robot coordination (8' x 8' x 8' gantry, Kuka Robot)
- Will enable manufacture of large systems (tooling, UAVs, robotics...)

22 BMF/MDF tour AlChE - Sept 2013 - Claus Danie

Carbon Fiber and Composites

- Enable deployment of low-cost technology in high-volume applications
 - Low-cost raw materials
 - Low-cost fiber manufacturing processes
 - High-rate, robust composites manufacturing processes
- Develop and transition to industry technology with significant impacts on U.S. and global energy security

Maximize impact through industry partnerships

23 BMF/MDF tour AlChE - Sept 2013 - Claus Danie

OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Building a sustainable carbon fiber commercialization strategy

OAK RIDGE NATIONAL LABORATORY

24 BMF/MDF tour AlChE - Sept 2013 - Claus Daniel

Carbon Fiber Technology Facility

- 42,000 ft² facility, equipped using \$34.7M in DOE funding (awarded in 2009)
 - November 2011: Facility occupancy
 - October 2012: Installation complete
 - Q4 2012: Start-up testing/commissioning
 - Q1 2013: First fibers off the line (using "standard" PAN precursor material)

Production capacity:

- 390-ft. long processing line
- Custom unit operation configuration
- 25 tons/yr of fiber from multiple precursors in various forms
- Allows industry to validate conversion of lowcost precursors at semi-production scale

ENERGY

Energy Efficiency & Renewable Energy

Carbon Fiber Composites Consortium—

A public-private partnership enabling innovations in carbon fiber and composites

- ABC Group Sales & Engineering
- Advanced Composites Group
- Alpha Industries
- ATK Launch Systems
- BASF Corporation
- Chomarat NA, LLC
- Composite Applications Group
- Continental Structural Plastics
- Cytec Carbon Fibers
- Dow Chemical Company
- Despatch Industries
- Faurecia
- Fibria
- Ford Motor Company
- General Electric
- Global Composites Solutions
- Graftech International
- Hanwha Azdel
- Harper International
- Hills, Inc.

- Innovation Valley Inc.
- Innventia
- **INOAC USA**
- Lignol Innovations Materials & Chemistry Laboratory
- Metalsa Structural Products
- NFT, Inc.
- NovusFolium
- Plasan Carbon Composites
- Sabic Innovative Plastics
 - SGL Carbon Fibers
 - Sodra Innovation
 - SSOE Group
 - Steelcase
 - Swift Engineering
 - Toho Tenax America
 - United Technologies Research Center
 - United States Enrichment Corp. (USEC)
 - **UT-Battelle** Virdia, Inc.
 - Volkswagen Group of America

Dow and Ford partner with ORNL to scale up low-cost carbon fiber

- · Dow and Ford team up to bring low-cost, highvolume carbon fiber composites to next-generation vehicles
 - Reducing weight of new cars and trucks by up to 750 lbs by the end of the decade
 - Foundational work at ORNL on low-cost precursors key to automotive applications
 - DOE and state of Michigan fund \$13.5M research agreement to develop lower cost carbon fiber production process using polyolefin in place of conventional polyacrylonitrile (PAN) as feedstock
 - Novel process could reduce production cost by
 - High-volume commercial launch anticipated outcome

Oak Ridge National Laboratory

Working with ORNL's MDF

· Identify opportunities aligned with ORNL's MDF technology thrust areas

· Discuss ideas with MDF director

· Jointly pursue funding to support collaborative activity

vith ORNL's MDF							turing Demonstration Facility	
		Assess	A	Assist		Collaborate	Demonstration Facility	
	4							
	Type of Agreement	User Agreement (Non Proprietary)		Work for Others Agreement (Proprietary)		Cooperative Research & Development Agreement		
	Length of Engagement	Up to 12 months		As defined by agreement		Longer-term basis of a year or more		
	Cost to Company	NO COST		Full cost recovery		Cost-share required		
	Intellectual Property Rights	Each party owns its own inventions. Jointly developed inventions will be jointly owned.		Companies own intellectual property made or created using corporate funds as a result of these engagements.		Companies own inventions they make during the collaboration and have an option to negotiate an exclusive license in a specific field of use to inventions made by ORNIL.		
	Protection of Generated Information	Information generated is publicly available.		Companies paying for services with corporate funds can treat all generated data as their proprietary information.		Commercially valuable information generated under a CRADA may be protected for up to 5 years, depending on funding source.		

OAK RIDGE NATIONAL LABORATORY

Science, Technology, Engineering & Mathematics (STEM) ORNL helps kick off 2013 FIRST

Science, Technology, Engineering & Mathematics (STEM)
DOE's MDF Partners with NAMII to
Showcase Additive Manufacturing at
2013 FIRST Championship in St. Louis

