Trends and Challenges in Korean Chemical Engineering Education

KAIST
Chemical & Biomolecular Engineering
Jae W. Lee, Department Head
2017. 10. 03
Number of University in Korea \(\equiv \) 350

Number of Dept. of Chemical Engineering \(\equiv \) 80 \(\equiv \) 23%

Number of Dept. of Industry Chemistry \(\equiv \) 10 \(\equiv \) 3%

Number of Dept. of Nano-related Engineering \(\equiv \) 30 \(\equiv \) 9%

Number of Dept. of Energy-related Engineering \(\equiv \) 60 \(\equiv \) 17%

Number of Dept. of Environmental-related Engineering \(\equiv \) 100 \(\equiv \) 29%

Approximated % and average # of professors with non-ChemE (or similar) degrees

<table>
<thead>
<tr>
<th>University</th>
<th># of Prof. in ChemE</th>
<th># (%) of Prof. with ChemE</th>
<th># (%) of Prof. with Chem</th>
<th># (%) of Prof. with Bio</th>
<th># (%) of Prof. with Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul National University</td>
<td>32</td>
<td>27 (84.4)</td>
<td>3 (9.4)</td>
<td>1 (3.1)</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>KAIST</td>
<td>24</td>
<td>20 (83.3)</td>
<td>1 (4.2)</td>
<td>1 (4.2)</td>
<td>2 (8.3)</td>
</tr>
<tr>
<td>POSTECH</td>
<td>24</td>
<td>20 (83.3)</td>
<td>3 (12.5)</td>
<td>0 (0.0)</td>
<td>1 (4.2)</td>
</tr>
<tr>
<td>Yonsei University</td>
<td>20</td>
<td>18 (90.0)</td>
<td>1 (5.0)</td>
<td>0 (0.0)</td>
<td>1 (5.0)</td>
</tr>
<tr>
<td>Korea University</td>
<td>23</td>
<td>22 (95.7)</td>
<td>1 (4.3)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>
Current State of Chemical Engineering in KAIST

Number of CBE Students in KAIST

<table>
<thead>
<tr>
<th>Category</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment (2 - 4th Yr)</td>
<td>385</td>
<td>379</td>
<td>396</td>
<td>429</td>
</tr>
<tr>
<td>Graduated</td>
<td>91</td>
<td>103</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Graduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>112</td>
<td>108</td>
<td>116</td>
<td>138</td>
</tr>
<tr>
<td>PhD</td>
<td>202</td>
<td>221</td>
<td>249</td>
<td>249</td>
</tr>
<tr>
<td>Graduated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>38</td>
<td>42</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>PhD</td>
<td>28</td>
<td>29</td>
<td>39</td>
<td>51</td>
</tr>
</tbody>
</table>

Undergraduate

- **Enrollment**: 385, 379, 396, 429
- **Graduated**: 91, 103, 90, 100

Graduate

- **Enrollment**: MS 112, 108, 116, 138; PhD 202, 221, 249, 249
- **Graduated**: MS 38, 42, 42, 58; PhD 28, 29, 39, 51

Admission: more applications than available table of organization (T/O)
Demand for ‘chemical engineers’ in the industry keeps increasing...
Research Areas

Energy & Environmental Systems
- D. Koh
- J. H. Kim
- J. H. Lee
- J. W. Lee
- Y. S. Kim
- Y. C. Kim
- H. G. Park
- S. Y. Lee
- Y. K. Chang
- K. J. Jeong

Catalysis
- S. B. Park
- H. J. Lee
- M. K. Choi
- D. H. Kim
- S. H. Kim
- D. C. Lee
- S. G. Im
- H. T. Jung
- E. S. Cho

Nanomaterials

Biotechnology

Soft Materials (Polymer)
- B. J. Kim
- H. T. Kim
- S. Li
- O. O. Park
- S. Y. Choi

Energy & Environmental Systems

Catalysis

Nanomaterials

Biotechnology

Soft Materials (Polymer)
Course Offerings in KAIST

Undergraduate Course Offerings (Representative)

Broad Education

Fundamentals:
- Introduction to Chemical and Biomolecular Engineering (CBE)
- Industrial Organic Chemistry
- CBE Analysis
- Chemical Engineering Thermodynamics
- Introduction to Numerical Methods for CBE
- Physical Chemistry for CBE
- Molecular Reaction Engineering
- Separation Processes
- Fluid Mechanics
- Heat and Mass Transfer
- CBE Capstone Design Project

Experiments:
- Molecular Engineering Laboratory
- CBE Laboratory

Specialized Research Topics

Energy & Environmental Systems:
- Process Simulation and Control
- Techniques of Process and Product Design
- Introduction to Environmental Engineering

Nano Materials & Catalysis:
- Nanochemical Technology

Soft Materials:
- Introduction to Macromolecular Engineering
- Electrochemical Principles for CBE

Biotechnology:
- Biomolecular Engineering
- Biochemical Engineering
- Bioinformatics
- Biorefineries for Fuels and Chemicals
Major Trends in Our Education

Utilization of Calculation and Simulation Tools

CBE 206. Introduction to Numerical Methods for Chemical and Biomolecular Engineering
MATLAB®

CBE 441. Techniques of Process and Product Design
Aspen Plus®

CBE 442. Chemical and Biomolecular Engineering Capstone Design Project
SuperPro Designer®
Graduate Course Offerings (Representative)

Fundamentals:
- Scientific Writing
- Research Methodology for Chemical and Biomolecular Engineers
- Problem Solving in CBE
- Engineering Applied Mathematics
- Numerical Method for Chemical Engineers
- Design of Reaction System
- Introduction to Interfacial Engineering
- Mass Transfer

Energy & Environmental Systems:
- Rate-controlled Separation Process
- Multiphase Reactor Engineering
- Advanced Process Control
- Process Optimization • Energy Engineering

Nano Materials:
- Thin Film Nanotechnology • Microfluidics
- Organic Nano-Structured Materials

Soft Materials:
- Introduction to Macromolecular Engineering
- Electrochemical Principles for CBE
- Polymer Fluid Dynamics

Catalysis:
- Introduction to Catalysis Engineering
- Catalysis for Renewables
- Theory of Catalysis • Design of Catalysis

Biotechnology:
- Metabolic Engineering
- Nucleic Acid Engineering
THANK YOU