TRENDS AND CHALLENGES IN CHEMICAL ENGINEERING RESEARCH-EUROPE

Guy B. Marin
GROWTH WORLD CHEMICAL SALES 2015-2030

Source: Cefic Chemdata International 2016
R&D IN THE EU CHEMICAL INDUSTRY

R&D spending in 2005 (€ billion)
R&D spending in 2015 (€ billion)

Source: Cefic Chemdata International 2016
R&D IN THE EU CHEMICAL INDUSTRY

Average growth rate p.a. 1993 – 2015

Sales (+2.9%)

R&D spending (+1.1%)

R&D spending (% of sales) (-1.7%)

Source: Cefic Chemdata International 2016

World Congress of Chemical Engineering, Barcelona, Oct 1-5 2017
EUROPEAN RESEARCH COUNCIL (ERC)

• Set up in 2007 by the EU, the ERC funds ambitious projects in frontier research. It aims at:
 • Supporting excellent frontier research throughout Europe in all scientific domains: Life Sciences (LS), Physical Sciences and Engineering (PE), and Social Sciences and Humanities (SH)
 • Retaining and attracting the best scientific talent to Europe, by offering very substantial grants for up to 5 years
ERC IN HORIZON 2020

• The ERC is a key component of Horizon 2020, the EU programme for Research and Innovation
• €13 billion budget for 2014-2020, i.e. 17% of the Horizon 2020 budget
• Over 60,000 applications received and around 7,000 projects funded
• Highly competitive calls: success rate is around 11%
Reuters Most Innovative Governmental Agencies

<table>
<thead>
<tr>
<th>Rank</th>
<th>Research Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alternative Energies & Atomic Energy Commision (France)</td>
</tr>
<tr>
<td>2</td>
<td>Fraunhofer Society (Germany)</td>
</tr>
<tr>
<td>3</td>
<td>Japan Science & Technology Agency (Japan)</td>
</tr>
<tr>
<td>4</td>
<td>U.S. Department of Health & Human Services (U.S.)</td>
</tr>
<tr>
<td>5</td>
<td>National Center for Scientific Research (France)</td>
</tr>
<tr>
<td>6</td>
<td>Korea Institute of Science & Technology (South Korea)</td>
</tr>
<tr>
<td>7</td>
<td>National Institute of Advanced Industrial Science and Technology (Japan)</td>
</tr>
<tr>
<td>8</td>
<td>U.S. Department of Energy (U.S.)</td>
</tr>
<tr>
<td>9</td>
<td>Agency for Science, Technology and Research (Singapore)</td>
</tr>
<tr>
<td>10</td>
<td>French Institute of Health & Medical Research (France)</td>
</tr>
</tbody>
</table>
EPSRC ChE GRANTS (UK)

<table>
<thead>
<tr>
<th>Research area</th>
<th>Value ChE grants (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioenergy</td>
<td>14 387 203</td>
</tr>
<tr>
<td>Carbon capture and storage</td>
<td>7 749 142</td>
</tr>
<tr>
<td>Catalysis</td>
<td>1 774 159</td>
</tr>
<tr>
<td>Chemical reaction dynamics and mechanism</td>
<td>1 340 153</td>
</tr>
<tr>
<td>Chemical structure</td>
<td>566 558</td>
</tr>
<tr>
<td>Combustion engineering</td>
<td>1 035 606</td>
</tr>
<tr>
<td>Complex fluids and rheology</td>
<td>17 130 678</td>
</tr>
<tr>
<td>Fluid dynamics and aerodynamics</td>
<td>2 821 945</td>
</tr>
<tr>
<td>Hydrogen and alternative energy vectors</td>
<td>11 585 220</td>
</tr>
</tbody>
</table>

Grants in Chemical Engineering Departments: £ 58 390 664

Source: http://gow.epsrc.ac.uk
Search on “Chemical engineering”

26% of publications are European
A MULTI-LAYERED VIEW OF CHEMICAL AND BIOCHEMICAL ENGINEERING

Jerzy Bałdyga, Béatrice Biscans, Elisabetta Brunazzi, Enrico Drioli, Hermann Feise, Andrew Furlong, Rafiqul Gani, Kevin Van Geem, Andrzej Gorak, Jean-Charles de Hemptine, Gurkan Karakas, Antoon J. B. ten Kate, Jean-Marc LeLann, Guy Marin, Flavio Manenti, Michael Narodoslawsky, Patrick Piccione, Manuel Andres Rodrigo, Bent Sarup, Eva Sorensen, Nigel Titchener-Hooker, Luuk van der Wielen, John M Woodley
The Outer Unifying Layer

Interdisciplinary integration of C&B Eng know-how

Science & technology

Innovative solutions for service provisions

Sustainable industrial development

Minimized ecological pressure, maximized social benefit

Responsibile counselling of societal stakeholders

Process engineering (unit operations, reaction pathways, process integration,...)

Design, Construction & Operation of industrial plants

Raw materials

Products

Resources

Grand Challenges
SUSTAINABLE PROCESS INDUSTRY THROUGH RESOURCE AND ENERGY EFFICIENCY (SPIRE)

• Public Private Partnerships (PPPs)
• Mission: ensure the development of enabling technologies and best practices along all the stages of large scale existing value chain productions that will contribute to a resource efficient process industry
• It represents:
 • 20% of the total European manufacturing sector more than 130 industrial and research process stakeholders
 • cement, ceramics, chemicals, engineering, minerals and ores, non-ferrous metals, steel and water sectors
The circular economy keeps products at highest utility and value.

Up to 70% of the European chemical industry molecules provided to customer industries and end-users can be recirculated using all five loops.

Courtesy of Henk van den Berg
~ 425 MTOE OF EU ENERGY CONSUMPTION COULD BE REDUCED IN A FULLY FORMED CIRCULAR SCENARIO

Courtesy of Henk van den Berg
Three transition paths:

- **Circular economy and biomass feedstock**
 Reuse of waste streams (e.g. CO from the steel industries and plastic waste) and application of biomass as raw material and heat source

- **Energy-efficiency and electrification**
 Continuation of energy reduction program and use of electrical energy generated with minimum carbon

- **Maximum storage of CO₂**
 Large scale application of CCS (Carbon Capture and Storage) and CCU (Carbon Capture and Utilisation)

Courtesy of Henk van den Berg
Indicator for a Circular Economy

The indicator for a circular economy is:

$$\frac{\text{GDP} \times \text{GDP} \times \text{recycle rate}}{\text{TPES} \times \text{population} \times \text{CO}_2 \text{ emission}}$$

<table>
<thead>
<tr>
<th>Country</th>
<th>Population (M)</th>
<th>GDP (trillion $)</th>
<th>TPES per capita (toe per capita)</th>
<th>CO$_2$ emissions (Mt CO$_2$)</th>
<th>Recycle rate (%)</th>
<th>Indicator value ($10^{-2} \frac{\text{$/toe}}{\text{capita/tonne CO}_2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>314.3</td>
<td>14.2</td>
<td>6.8</td>
<td>5.1</td>
<td>37</td>
<td>2.2</td>
</tr>
<tr>
<td>Germany</td>
<td>81.9</td>
<td>2.9</td>
<td>3.8</td>
<td>755</td>
<td>45</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Sources: European Academies Science Advisory Council
ENERGY STORAGE: BETTER, MORE EFFICIENT

Method: uses of 2-dimensional nanomaterials, including graphene, to create and print batteries

Result: could increase the lifetime of a battery of about 5000 times

Valeria Nicolosi, Trinity College Dublin (Ireland)

3D2DPrint (3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing)
The ERC research team developed a technique to produce high-quality diesel fuel that uses feedstock more efficiently, generates fewer by-products and results in much lower emissions.

Prof Krijn Pieter DE JONG, Utrecht University

NanoPartCat (Supported Nanoparticles for Catalysis: Genesis and Dynamics in the Liquid Phase), ERC Advanced Grant 2013

ERC story: Controlled Catalysis for ultra-clean fuels
TRENDS

Reaction engineering

- Separation units
- Materials design
- Ab initio

Process
- Kinetics
- Mechanism
- Reactor
- Transport phenomena
- Surface phenomena

Process level

Molecular level

from atom (nm) to full process (m)