TRENDS AND CHALLENGES IN CHEMICAL ENGINEERING RESEARCH-EUROPE

Guy B. Marin

GROWTH WORLD CHEMICAL SALES 2015-2030

R&D IN THE EU CHEMICAL INDUSTRY

R&D spending in 2005 (€billion) R&D spending in 2015 (€billion)

Source: Cefic Chemdata International 2016

R&D IN THE EU CHEMICAL INDUSTRY

Average growth rate p.a. 1993 – 2015

Sales (+2.9%)

R&D spending (+1.1%)

— R&D spending (% of sales) (-1.7%)

Source: Cefic Chemdata International 2016

EUROPEAN RESEARCH COUNCIL (ERC)

- Set up in 2007 by the EU, the ERC funds ambitious projects in frontier research. It aims at:
 - Supporting excellent frontier research throughout Europe in all scientific domains: Life Sciences (LS), Physical Sciences and Engineering (PE), and Social Sciences and Humanities (SH)
 - Retaining and attracting the best scientific talent to Europe,
 by offering very substantial grants for up to 5 years

ERC IN HORIZON 2020

- The ERC is a key component of Horizon 2020, the EU programme for Research and Innovation
- €13 billion budget for 2014-2020, i.e. 17% of the Horizon 2020 budget
- Over 60,000 applications received and around 7,000 projects funded
- Highly competitive calls: success rate is around 11%

REUTERS MOST INNOVATIVE GOVERNMENTAL AGENCIES

Rank	Research institute					
1	Alternative Energies & Atomic Energy Commision (France)					
2	Fraunhofer Society (Germany)					
3	Japan Science & Technology Agency (Japan)					
4	U.S. Department of Health & Human Services (U.S.)					
5	National Center for Scientific Research (France)					
6	Korea Institute of Science & Technology (South Korea)					
7	National Institute of Advanced Industrial Science and Technology (Japan)					
8	U.S. Department of Energy (U.S.)					
9	Agency for Science, Technology and Research (Singapore)					
10	French Institure of Health & Medical Research (France)					

EPSRC ChE GRANTS (UK)

EPSRC: Engineering and Physical Sciences Research Council

Research area	Value ChE grants (£)
Bioenergy	14 387 203
Carbon capture and storage	7 749 142
Catalysis	1 774 159
Chemical reaction dynamics and mechanism	1 340 153
Chemical structure	566 558
Combustion engineering	1 035 606
Complex fluids and rheology	17 130 678
Fluid dynamics and aerodynamics	2 821 945
Hydrogen and alternative energy vectors	11 585 220

Grants in Chemical Engineering Departments: £ 58 390 664

Source: http://gow.epsrc.ac.uk

SCIENCE CITATION INDEX: TOP 20 BY COUNTRY

Search on "Chemical engineering"

A MULTI-LAYERED VIEW OF CHEMICAL AND BIOCHEMICAL ENGINEERING

Jerzy Bałdyga, Béatrice Biscans, Elisabetta Brunazzi, Enrico Drioli, Hermann Feise, Andrew Furlong, Rafigul Gani, Kevin Van Geem, Andrzej Gorak, Jean-Charles de Hemptine, Gurkan Karakas, Antoon J. B. ten Kate, Jean-Marc Lelann, Guy Marin, Flavio Manenti, Michael Narodoslawsky, Patrick Piccione, Manuel Andres Rodrigo, Bent Sarup, Eva Sorensen, Nigel Titchener-Hooker, Luuk van der Wielen, John M Woodley

The Outer Unifying Layer

SUSTAINABLE PROCESS INDUSTRY THROUGH RESOURCE AND ENERGY EFFICIENCY (SPIRE)

- Public Private Partnerships (PPPs)
- Mission: ensure the development of enabling technologies and best practices along all the stages of large scale existing value chain productions that will contribute to a resource efficient process industry
- It represents:
 - 20% of the total European manufacturing sector more than
 130 industrial and research process stakeholders
 - cement, ceramics, chemicals, engineering, minerals and ores, non-ferrous metals, steel and water sectors

THE CIRCULAR ECONOMY KEEPS PRODUCTS AT HIGHEST UTILITY AND VALUE

up to 70% of the European chemical industry molecules provided to customer industries and end-users can be recirculated using all five loops

Courtesy of Henk van den Berg

~ 425 MTOE OF EU ENERGY CONSUMPTION COULD BE REDUCED IN A FULLY FORMED CIRCULAR SCENARIO

Courtesy of Henk van den Berg

FROM PARIS AGREEMENT TO ROADMAP 2050 VNCI – NETHERLANDS CHEMICAL INDUSTRY ASSOCIATION

- Three transition paths:
- Circular economy and biomass feedstock
 Reuse of waste streams (e.g. CO from the steel industries and plastic waste) and application of biomass as raw material and heat source
- Energy- efficiency and electrification

 Continuation of energy reduction program and use of electrical energy generated with minimum carbon
- Maximum storage of CO₂
 Large scale application of CCS (Carbon Capture and Storage) and CCU (Carbon Capture and Utilisation)

Courtesy of Henk van den Berg

INDICATOR FOR A CIRCULAR ECONOMY

Country	Population	GDP (trillion \$)	TPES per capita (toe per capita)	CO ₂ emissions (Mt CO ₂)	Recycle rate (%)	Indicator value (10 ⁻² \$ ² /toe /capita/tonne CO ₂)
USA	314.3 M	14.2	6.8	5.1	37	2.2
Germany	81.9 M	2.9	3.8	755	45	19.0

Sources: European Academies Science Advisory Council

data: International Energy Agency (2013)

ENERGY STORAGE: BETTER, MORE EFFICIENT

Method: uses of 2-dimensional nanomaterials, including graphene, to create and print batteries

Result: could increase the lifetime of a battery of about 5000 times

Valeria Nicolosi, Trinity College Dublin (Ireland)

3D2DPrint (3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing)

CATALYSTS AND ULTRA-CLEAN FUELS

❖ The ERC research team developed a technique to produce high-quality diesel fuel that uses feedstock more efficiently, generates fewer by-products and results in much lower emissions.

Prof Krijn Pieter DE JONG, Utrecht University

NanoPartCat (Supported Nanoparticles for Catalysis: Genesis and Dynamics in the Liquid Phase), ERC Advanced Grant 2013

ERC story:
Controlled Catalysis for ultra-clean
fuels

TRENDS

CHEMICAL ENGINEERING IN THE 21ST CENTURY

LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 914, 9052 Ghent, Belgium

E info.lct@ugent.be

T 003293311757

https://www.lct.ugent.be

