

Funding Trends and Opportunities in the Chemical, Bioengineering, Environmental, and Transport Systems Division of NSF

T.J. (Lakis) Mountziaris

(tmountzi@nsf.gov)

Program Director
Process Systems, Reaction Engineering
and Molecular Thermodynamics
ENG/CBET

NATIONAL SCIENCE FOUNDATION

NSF Created by the US Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes."

- \$7.5B budget (FY2017)
- 24% of federally funded basic research at U.S. Universities

Directorates:

- Mathematical & Physical Sciences (MPS)
- Engineering (ENG)
- Biological Sciences (BIO)
- Computer & Information Science & Engineering (CISE)
- Geosciences (GEO)
- Social, Behavioral and Economic Sciences (SBE)
- Education & Human Resources (EHR)

NSF Director France A. Córdova. Credit: NSF/Stephen Voss

Directorate for Engineering

ENGINEERING

Investing in engineering research and education and fostering innovation to benefit society

ENGINEERING BUDGET

	FY 2016 Estimate	FY 2017 Request,	FY 2017 Request,	FY 2017 Request, Total	FY 2017 Request Total change over FY 2016 Estimate	
		Discretionary	Mandatory		Amount	Percent
CBET	\$183.82	\$187.18	\$11.24	\$198.42	\$14.60	7.9%
СММІ	216.39	220.67	13.25	233.92	17.53	8.1%
ECCS	113.95	115.80	6.97	122.77	8.82	7.7%
EEC	107.61	113.50	6.82	120.32	12.71	11.8%
IIP	239.93	254.17	14.73	268.90	28.97	12.1%
SBIR/STTR	188.56	201.67	11.59	213.26	24.70	13.1%
EFMA	54.49	55.09	3.31	58.40	3.91	7.2%
ENG TOTAL	\$916.19	\$946.41	\$56.32	\$1,002.73	\$86.54	9.4%

NATIONAL SCIENCE FOUNDATION | DIRECTORATE FOR ENGINEERING

Chemical, Bioengineering, Environmental, and Transport Systems Division (CBET)

Richard Dickinson Division Director

Timothy Patten

Deputy Division Director (Acting)

Bioengineering Environmental Transport, Thermal, Chemical and Engineering **Engineering and** and Fluid **Process Systems** Healthcare **Sustainability** Phenomena 1491 1407 1440 **Biotechnology** 1401 **Combustion and Environmental** and Biochemical Catalysis **Fire Systems Engineering Engineering Bob McCabe** Song-Charng Kong Karl Rockne **Steven Peretti** 1179 5345 1417 1443 **Biological & Enviro Biomedical Separations** Interactions of Fluid Dynamics Engineering **Nanoscale Materials Angela Lueking Ronald Joslin Michele Grimm Nora Savage** 1403 - Process 1415 7643 7236 Systems, Reaction **Particulate Environmental Biophotonics** Engineering and and Multiphase Sustainability Molecular **Processes Thermodynamics Leon Esterowitz Bruce Hamilton Susan Muller** Triantafillos (Lakis) **Mountziaris** 1406 022Y 7909 7644 **Thermal Transport INFEWS** Nano-Biosensing **Energy for Processes** Jim Jones Sustainability **Chenzhong Li** José Lage **Carole Read** 5342 - General and Age-Related

Disabilities Engineering

Michele Grimm

CBET DIVISION

Parti

Particulate & Multiphase

Muller

Joslin

Thermal Transport

Fluid Dynamics

Lage

Combustion

Kong

\$38 M

+1 M CDSE

Catalysis

McCabe

Process & Reaction Eng

Mountziaris

Separations

Lueking

Energy for Sustainability

Read

\$39 M

+3 M DMREF

Chemical Process Systems

Microgravity

Environmental Eng

Rockne + Prentice

Environmental Sustainability

Hamilton

NanoBio Interactions

Savage

INFEWS

Jones

\$43 M

+1 M CRISP

+1 M Citizen Sci

INFEWS, Water Quality

Modular Manufacturing, Clean Energy

Biotechnology/Biochem

Peretti

Biomedical Eng + GARDE

Grimm + Lucas

NanoBio Sensing

Li

Biophotonics

Esterowitz

\$44 M

+5 M STC

+1 M NRI: Robotics

Biotech and Biomed

Advanced Manufacturing, Cellular Therapeutics, Engineering Biology

Environmental

Transport

CHEMICAL PROCESS SYSTEMS

Robert McCabe

Catalysis

- Heterogeneous catalysis related to sustainability and the environment
- Heterogeneous catalyst design and synthesis
- Basic understanding of catalytic reactions

Angela Lueking

Process Separations

- Methods and mechanisms for purification of gases, chemicals, or water
- Mass separation agents or processes
- Field (flow, magnetic, electrical) induced separations

T.J. (Lakis) Mountziaris

Process Systems, Reaction Eng & MolecularThermodynamics

- Chemical Reaction Engineering
- Process Design, Optimization and Control
- Reactive Polymer Processing
- Molecular Thermodynamics for Chemical Processing and Materials

Carole Read

Energy for Sustainability

- Electrochemical Energy Systems
- Organic Photovoltaics

ENGINEERING BIOLOGY & HEALTH

Steve Peretti

Cellular & Biochemical Engineering

- Biomanufacturing: Metabolic eng, "omics", single cell dynamics and synthetic biology
- Quantitative systems biotechnology
- Cell culture technologies
- Protein and enzyme engineering

Michele Grimm

Engineering Biomedical Systems

- Models for tissues and organ systems
- Advanced biomanufacturing of 3-D tissues and organs
- New tools to study physiological processes

Disability and Rehabilitation Engineering

- Neuroengineering
- Rehabilitation robotics

Leon Esterowitz

Biophotonics

- Macromolecule Markers
- Micro- & Nano-photonics; Low-Coherence Sensing @ Nanoscale
- Neurophotonics and Optogenetics

Chenzhong

Nano-biosensing

- Multi-purpose sensor platforms
- Novel transduction principles, mechanisms and sensor designs
- Nano-biosensors for biomolecular interactions
- Intracellular biosensing

Karl Rockne

Environmental Engineering

- Enhancing availability of high quality water supplies
- Fate and transport of contaminants in air, water, soil, solid waste

Nora Savage

Biological & Environmental Interactions with Nanoscale Materials

- Characterization and prediction of interactions
- Transport, interaction, and impact on biological systems

Bruce Hamilton

Environmental Sustainability

- Industrial Ecology
- Green Engineering
- Ecological Engineering
- Earth Systems Engineering

Jim Jones

Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS)

- Computational modeling
- Real-time, cyber-enabled interfaces
- System and technological solutions
- FEW scientific workforce development

TRANSPORT PHENOMENA

Ron Joslin

Fluid Dynamics

- Turbulence
- Bio-inspired fluid dynamics
- Complex Fluids
- Micro- and Nano-fluidics
- Interfacial Interactions and Instabilities
- Wind and Ocean Energy Harvesting

Susan Muller

Particulate & Multiphase Systems

- Multiphase flow
- Particle science and technology
- Multiphase transport in biological systems
- Interfacial transport

José Lago

Thermal Transport Processes

- Convection/Diffusion/Radiation
- Thermodynamics
- Bio- Heat and Mass Transport
- Nano-, Micro- and Meso-thermics

Song-Charng Kong

Combustion & Fire Systems

- Basic Combustion Science
- Combustion Science related to Clean Energy
- Fire Prevention

CBET BUDGET

FY2017 BUDGET: \$184.5M

CATALYSIS FY17 (\$8.7M)

PROCESS SYSTEMS, REACTION ENGINEERING AND MOLECULAR THERMODYNAMICS FY17 (\$8.2M)

SEPARATIONS FY17 (\$7.6M)

ENERGY FOR SUSTAINABILITY FY17 (\$10.5M)

CBET COMMUNITY

JBEI/Jay Keasling

Chemical Engineering, 22%

Civil/Environmental Engineering, 12%

Mechanical Engineering, 23%

Bioengineering/Biomed Engineering, 16%

FY2016 INVESTMENT CATEGORIES

CBET Total: \$184.5 M

% of Total Budget to Special Programs:

- CAREER ~24%
- EAGER/RAPID ~ 5%
- GOALI ~ 2.5%
- Workshops/Conferences/Supplements ~ 3%

PRIORITY AREAS

- Innovations at the Nexus of Food, Energy, and Water Systems
- Risk and Resilience
- Clean Energy Technologies
- Cyber-Enabled Materials,
 Manufacturing, and Smart
 Systems
 - Advanced Manufacturing
 - Modular Manufacturing
- Smart and Connected Communities
- National Nanotechnology Initiative

- Understanding the Brain
 - BRAIN Initiative
- Broadening Participation
 - NSF INCLUDES: Inclusion across the Nation of Communities of Learners that have been Underrepresented for Diversity in Engineering and Science
- National Strategic Computing Initiative
- Innovation Corps

COLLABORATION WITH OTHER AGENCIES

MODULAR CHEMICAL MANUFACTURING (NSF-DOE)

- National Academies Workshop: The Changing landscape of Feedstocks for Chemical Production – Implications for Catalysis (2016)
- NSF-DOE Workshop in January 2017

LOW-TEMPERATURE PLASMAS (NSF-DOE)

CLEAN WATER (NSF-WRF-EPRI-WE&RF)

CBET - Engineering and Physical Sciences Research Council (UK)

NSF-CASIS - Combustion and Thermal Transport Processes

Research on the International Space Station

WORKSHOPS

ADVANCED BIOMANUFACTURING

Biomanufacturing for Cell-Based Therapies:

- Increase efficiency of differentiation
- Rapid, non destructive cell phenotyping
- Bioreactors for reproducible cell expansion/differentiations
- Separation technologies
- Stable cell lines
- Computational models of stochastic cell variability
- Scale up and scale out

FY16 Budget: ~\$3.7M

INNOVATION AT THE NEXUS OF FOOD ENERGY AND WATER SYSTEMS (INFEWS)

Goals

- Understand the FEW system through integrated systems modeling;
- Create methodologies for effective data integration/ cyber elements;
- Research innovative solutions and technologies; and,
- Support education, workforce, and community development.

- > Investments in fundamental research including:
 - solar energy, wind energy, energy harvesting, and other forms of sustainable energy generation
 - biofuels and bioenergy
 - energy storage and smart grid
 - smart buildings and energy efficiency
 - systems engineering and optimization for energy
 - energy materials and manufacturing
- Focused topic areas in clean energy technology in NSF SBIR/STTR programs

Vano.gov U.S. National Nanotechnology Initiative

NNI Vision

A future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry

Jano.gov

U.S. National Nanotechnology Initiative

HHS/NIH

DOE **DOC/NIST NASA** HHS/CDC/ NIOSH NIOSH DOS **DOTr**

HHS/FDA

USDA

National Nanotechnology Initiative

SEPA EPA

USDA/NIFA

USDA/ARS

USDA/FS

DOC/ **USPTO**

IC/DNI

for:

Improved quality of life

DOL

DHS

CPSC

ITC

DOEd

Funding by NNI Agency, 2001-2017

USDA/ARS DOJ

■ DOT

CPSC

DHS

■ EPA

USDA/FS

USDA/NIFA DHHS/FDA

DHHS/NIOSH

U.S. National Nanotechnology Initiative

NNI Funding by Agency, 2001-2017

- † 2009 figures do not include American Recovery and Reinvestment Act funds for DOE (\$293 million), NSF (\$101 million), NIH (\$73 million), and NIST (\$43 million)
- # 2016 estimated funding is based on 2016 enacted levels and may shift as operating plans are finalized.
- *** 2017 Budget.

Looking Ahead: Ten Big Ideas

Understanding the Rules of Life: Predicting Phenotype

RESEARCH IDEAS

The Quantum
Leap: Leading
the Next
Quantum
Revolution

PROCESS IDEAS

Growing Convergent Research at NSF

NSF-INCLUDES: Enhancing Science and Engineering through Diversity

Mid-scale Research Infrastructure

NSF 2050: Seeding Innovation