Chemical Engineering Research in the US

Arvind Varma
R. Games Slayter Distinguished Professor
Davidson School of Chemical Engineering
Purdue University
West Lafayette, IN 47907, USA

10th World Congress of Chemical Engineering
Barcelona, Spain
October 3, 2017
Outline

- Overview of Academic ChE Research in the US
- Overview of Research Funding in the US
Outline

- Overview of Academic ChE Research in the US
- Overview of Research Funding in the US
The Paradigms of ChE

- **Unit Operations (1915)**
 - A. D. Little
 - W. H. Walker
 - W. K. Lewis

- **Engineering Science (1950s)**
 - N. Amundson
 - R. Aris
 - J. Prausnitz
 - A. Acrivos
 - R. Sargent

Transport Phenomena, 1960
Molecular Engineering

- Incorporation of biotechnology and nanotechnology in the ChE discipline
- Shared with other engineering and science fields, like paradigm 2.
- Growing feasibility to conduct molecular-scale simulations to calculate thermodynamic, transport, and other properties of fluids and materials
- Being applied currently with greater frequency and success for the analysis and design of ChE products and processes.

R. Langer
G. Whitesides
Academia: Shift toward Pure Science

- Significant **growth** in biological engineering and nanotechnology areas
 - In the last 15 years, >50% of young faculty hired in these areas
 - New faculty hires include a significant number of non-ChEs, and a move away from the traditional ChE areas

- Greatly **expands the scope of ChE** and promotes multidisciplinary research

- A significant **shift** toward pure science, away from core ChE areas

- Particularly for younger faculty, goal is to publish in journals such as *Science* and *Nature*, leading to **decreased frequency** of publication in mainstream ChE journals (*AIChE J.*, *Chem Eng Sci*, and *Ind Eng Chem Res*)

- In the long term, this **can adversely affect** future of the ChE discipline.
Industry-Academia Disconnect

Ranking by Companies of Relative Importance of Areas

<table>
<thead>
<tr>
<th>Skill</th>
<th>Average relative importance (from 1 to 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit operations, transport phenomena, thermodynamics, separation processes</td>
<td>4.6</td>
</tr>
<tr>
<td>Reaction engineering, catalysis, kinetics</td>
<td>4.0</td>
</tr>
<tr>
<td>Analysis, modeling, simulation, process control</td>
<td>4.0</td>
</tr>
<tr>
<td>Materials, surface science, polymers</td>
<td>3.2</td>
</tr>
<tr>
<td>Biotechnology, medical and life sciences</td>
<td>2.1</td>
</tr>
<tr>
<td>Nanotechnology and its applications</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Faculty Increase in Biological Engineering and Unit Operation Areas

<table>
<thead>
<tr>
<th>Rank of Professor</th>
<th>Biological Eng.</th>
<th>Unit Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>22%</td>
<td>-16%</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>26%</td>
<td>-12%</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>36%</td>
<td>-6%</td>
</tr>
</tbody>
</table>

Session organized by late John Chen, AIChE annual meeting, San Francisco, 2013
Recent Trends in Research

- ChE research in the last decade has been largely dominated by biologically-oriented engineering.
- This trend has been driven largely by research funding, given the increasing importance of biological engineering for addressing advances in healthcare and in the development of biomass-based fuels and chemicals.
- The importance of biotechnology is likely to continue as is research in nanotechnology, given the importance of analyzing physical, chemical, and biological phenomena at the atomic and molecular level, with applications in molecular self-assembly for the development of new materials at the nanoscale to control matter at the atomic scale.
- More recently, energy, sustainability and manufacturing have emerged as significant directions for ChE research.

Outline

- Overview of Academic ChE Research in the US
- Overview of Research Funding in the US
Overview and Funding Level in the U.S.

- **National R&D by Funder, in billion 2017 $**

- **University R&D by Source, in billion 2017 $**

- **Spending by field**
 - Math & computer science: 4.1%
 - Geosciences: 5.1%
 - Chemistry: 2.8%
 - Chemical engineering: 1.4%
 - Materials engineering: 1.4%
 - Other physical sciences: 4.6%
 - Other engineering: 14.5%
 - Life sciences: 60.8%
 - Social sciences: 3.6%
 - Other sciences: 1.7%

Note:
- *a* Includes agricultural, biological, medical, and other life sciences.
- *b* Includes astronomy, physics, and other physical sciences.
- *c* Includes psychology.

Source:
- NSF, National Science Foundation’s WebCASPAR database, 2015 data
Main Federal Funding Agencies

Main agencies and funding, in billion 2015 $

<table>
<thead>
<tr>
<th>Year</th>
<th>NSF 2015</th>
<th>Engineering 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY13</td>
<td>6,884</td>
<td>814</td>
</tr>
<tr>
<td>FY14</td>
<td>7,172</td>
<td>911</td>
</tr>
<tr>
<td>FY15</td>
<td>7,344</td>
<td>924</td>
</tr>
<tr>
<td>FY16</td>
<td>7,4633</td>
<td>916</td>
</tr>
<tr>
<td>FY17</td>
<td>7,472</td>
<td>1,002</td>
</tr>
</tbody>
</table>

CBET ~ 20% of ENG; ENG ~ 13.4% of NSF

CBET: Chemical, Bioengineering, Environmental, and Transport Systems

Supports discoveries in chemical and biochemical systems; environmental engineering and sustainability; bioengineering and engineering healthcare; and fundamental transport, thermal and fluid phenomena.

In constant $, total Federal R&D unchanged for ~15 years!

U.S. Department of Agriculture (USDA)
U.S. Department of Defense (DOD)
National Aeronautics and Space Administration (NASA)
U.S. Department of Energy (DOE)
National Science Foundation (NSF)
National Institute of Health (NIH)
American Recovery & Reinvestment Act (ARRA) - 2009

Source: 1975-1994 from NSF federal funds survey; remainder from AAAS R&D reports.
National Labs in the U.S.

Established starting in 1930-1940s
Lawrence Berkeley – 1931
Los Alamos – 1943
Oak Ridge – 1943
Argonne - 1946

Typically $0.5-1.5 billion annual budget per lab

Office of Science:
the lead federal agency supporting fundamental scientific research for energy and the Nation’s largest supporter of basic research in the physical sciences

NNSA:
National Nuclear Security Administration

17 Labs from DOE

Office of Science Laboratories
1. Ames Laboratory
 Ames, Iowa

2. Argonne National Laboratory
 Argonne, Illinois

3. Brookhaven National Laboratory
 Upton, New York

4. Fermi National Accelerator Laboratory
 Batavia, Illinois

5. Lawrence Berkeley National Laboratory
 Berkeley, California

6. Oak Ridge National Laboratory
 Oak Ridge, Tennessee

7. Pacific Northwest National Laboratory
 Richland, Washington

8. Princeton Plasma Physics Laboratory
 Princeton, New Jersey

9. SLAC National Accelerator Laboratory
 Menlo Park, California

10. Thomas Jefferson National Accelerator Facility
 Newport News, Virginia

Other DOE Laboratories
1. Idaho National Laboratory
 Idaho Falls, Idaho

2. National Energy Technology Laboratory
 Morgantown, West Virginia

3. Savannah River National Laboratory
 Aiken, South Carolina

4. National Renewable Energy Laboratory
 Golden, Colorado

NNSA Laboratories
1. Lawrence Livermore National Laboratory
 Livermore, California

2. Los Alamos National Laboratory
 Los Alamos, New Mexico

3. Sandia National Laboratory
 Albuquerque, New Mexico

Livermore, California
Role of Centers

- ERCs (Engineering Research Centers), funded by NSF

- ERCs funded by NSF ~ $4 M annually per Center; funding for up to 10 years

- Total ERCs: 74; currently active: 19

- Established in 1985

Note: All centers are multi-university partnerships; university shown is lead institution.
Four new ERCs announced on September 12, 2017

- **Fuels derived from shale gas**
 Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR)
 Purdue (lead); Partners: U. New Mexico, Northwestern U., U. Notre Dame, U. Texas - Austin

- **Therapies based on living cells**
 Center for Cell Manufacturing Technologies (CMaT)
 Georgia Tech (lead); Partners: U. Georgia, U. Wisconsin-Madison, U. Puerto Rico

- **Personalized heart tissue**
 Center for Directed Multiscale Assembly of Cellular Metamaterials (CELL-MET)
 Boston University (lead); Partners: U. Michigan, Florida International U.

- **Health systems for underserved populations**
 Center for Precise Advanced Technologies and Health Systems for Underserved Populations (PATHS-UP)
 Texas A&M (lead); Partners: UCLA, Rice, Florida International U.
Role of Centers

Materials Research Science and Engineering Centers

- University of California at Santa Barbara
 Materials Research Laboratory: An NSF MRSEC

- University of Utah
 Next Generation Materials for Plasmonics and Organic Spintronics

- University of Colorado Boulder
 Soft Materials Research Center

- University of Nebraska
 UNL Materials Research Science and Engineering Center

- University of Minnesota
 UMN Materials Research Science and Engineering Center

- University of Wisconsin-Madison
 Materials Research Science and Engineering Center on Structured Interfaces

- Princeton University
 Princeton Center for Complex Materials

- University of Chicago
 Materials Research Center

- Northwestern University
 Northwestern University Materials Research Science and Engineering Center

- Cornell University
 Cornell Center for Materials Research

- Ohio State University
 Center for Emergent Materials

- Columbia University
 Center for Precision Assembly of Superstratic and Superatomic Solids

- University of Michigan
 Center for Photonic and Multiscale Nanomaterials

- New York University
 NYU Materials Research Science and Engineering Center

- Yale University
 CRISP: Center for Research on Interface Structures and Phenomena

- Brandeis University
 The Bioinspired Soft Materials Center

- Harvard University
 Harvard Materials Research Center

- Massachusetts Institute of Technology
 Center For Materials Science and Engineering

- Pennsylvania State University
 Center for Nanoscale Science

- Duke/NC State/UNC Chapel Hill/NCU
 Research Triangle MRSEC

- University of Pennsylvania
 The Laboratory for Research on the Structure of Matter

Established in 1994

Total MRSECs # 21

Funding: $1.5-3.5 M per year
Role of Centers

- Energy Frontier Research Centers (EFRCs), funded by DOE

Established in 2009

36 EFRCs in 34 States + D.C.

- $2 to 4 Million per year per center
- ~ 595 Senior Investigators
- ~ 1630 students, postdoctoral fellows, and technical staff
- ~ 110 Institutions
Role of Centers

BioEnergy Research Centers (BERCs), funded by DOE

DOE Joint BioEnergy Institute
Lawrence Berkeley National Laboratory
Berkeley, California
- Carnegie Institution for Science at Stanford University
 Palo Alto, California
- Lawrence Livermore National Laboratory
 Livermore, California
- Sandia National Laboratories
 Albuquerque, New Mexico
- Sandia National Laboratories
 Livermore, California
- University of California
 Berkeley
- University of California
 Davis

DOE Great Lakes Bioenergy Research Center
University of Wisconsin
Madison
- Cornell University
 Ithaca, New York
- Illinois State University
 Normal
- Iowa State University
 Ames
- Lucigen Corporation
 Middleton, Wisconsin
- Michigan State University
 East Lansing
- Oak Ridge National Laboratory
 Oak Ridge, Tennessee
- Pacific Northwest National Laboratory
 Richland, Washington
- University of Minnesota
 St. Paul
- University of Missouri
 Columbia
- University of Toledo
 Toledo, Ohio

DOE BioEnergy Science Center
Oak Ridge National Laboratory
Oak Ridge, Tennessee
- ArborGen
 Summerville, South Carolina
- Brookhaven National Laboratory
 Upton, New York
- Ceres
 Thousand Oaks, California
- Cornell University
 Ithaca, New York
- Dartmouth College
 Hanover, New Hampshire
- Georgia Institute of Technology
 Atlanta
- Mascoma Corporation
 Boston, Massachusetts
- National Renewable Energy Laboratory
 Golden, Colorado
- North Carolina State University
 Raleigh
- The Samuel Roberts Noble Foundation
 Ardmore, Oklahoma
- University of California
 Los Angeles
- University of California
 Riverside
- University of Georgia
 Athens
- University of Minnesota
 St. Paul
- University of Tennessee
 Knoxville
- Verenium Corporation
 Cambridge, Massachusetts
- Virginia Polytechnic Institute and State University
 Blacksburg
- Washington State University
 Pullman
- West Virginia University
 Morgantown

Established in 2007
Three Centers until 2016
FY13 - FY17, $25 M per Center
Since FY18, $10 M per Center

New: Center for Advanced Bioenergy and Bioproducts Innovation (established in 2017) - University of Illinois at Urbana-Champaign
Chemical Industry R&D investments, $M – 18 major companies

<table>
<thead>
<tr>
<th>Company</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>% of Sales 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>1,570</td>
<td>1,634</td>
<td>1,715</td>
<td>1,770</td>
<td>1,763</td>
<td>5.8</td>
</tr>
<tr>
<td>Air Products</td>
<td>119</td>
<td>126</td>
<td>134</td>
<td>141</td>
<td>139</td>
<td>1.4</td>
</tr>
<tr>
<td>Albemarle</td>
<td>77</td>
<td>79</td>
<td>82</td>
<td>88</td>
<td>103</td>
<td>2.8</td>
</tr>
<tr>
<td>Arkema</td>
<td>147</td>
<td>164</td>
<td>166</td>
<td>172</td>
<td>232</td>
<td>2.7</td>
</tr>
<tr>
<td>Ashland</td>
<td>89</td>
<td>137</td>
<td>178</td>
<td>114</td>
<td>110</td>
<td>2.0</td>
</tr>
<tr>
<td>BASF</td>
<td>1,781</td>
<td>1,937</td>
<td>2,036</td>
<td>2,090</td>
<td>2,167</td>
<td>2.8</td>
</tr>
<tr>
<td>Cabot</td>
<td>66</td>
<td>73</td>
<td>74</td>
<td>60</td>
<td>58</td>
<td>2.0</td>
</tr>
<tr>
<td>Celanese</td>
<td>96</td>
<td>102</td>
<td>85</td>
<td>86</td>
<td>119</td>
<td>2.1</td>
</tr>
<tr>
<td>Clariant</td>
<td>183</td>
<td>182</td>
<td>188</td>
<td>221</td>
<td>212</td>
<td>3.5</td>
</tr>
<tr>
<td>Dow Chemical</td>
<td>1,646</td>
<td>1,708</td>
<td>1,747</td>
<td>1,647</td>
<td>1,598</td>
<td>3.3</td>
</tr>
<tr>
<td>DuPont</td>
<td>1,956</td>
<td>2,067</td>
<td>2,153</td>
<td>2,067</td>
<td>1,898</td>
<td>7.6</td>
</tr>
<tr>
<td>Eastman</td>
<td>158</td>
<td>198</td>
<td>193</td>
<td>227</td>
<td>251</td>
<td>2.6</td>
</tr>
<tr>
<td>Evonik Industries</td>
<td>405</td>
<td>436</td>
<td>437</td>
<td>458</td>
<td>482</td>
<td>3.2</td>
</tr>
<tr>
<td>FMC</td>
<td>105</td>
<td>118</td>
<td>118</td>
<td>129</td>
<td>144</td>
<td>4.4</td>
</tr>
<tr>
<td>W.R. Grace</td>
<td>69</td>
<td>65</td>
<td>65</td>
<td>80</td>
<td>70</td>
<td>2.3</td>
</tr>
<tr>
<td>Huntsman Corp.</td>
<td>166</td>
<td>152</td>
<td>140</td>
<td>158</td>
<td>160</td>
<td>1.6</td>
</tr>
<tr>
<td>Praxair</td>
<td>90</td>
<td>98</td>
<td>98</td>
<td>96</td>
<td>93</td>
<td>0.9</td>
</tr>
<tr>
<td>Solvay</td>
<td>173</td>
<td>290</td>
<td>333</td>
<td>274</td>
<td>307</td>
<td>2.2</td>
</tr>
<tr>
<td>Total and Average</td>
<td>8,896</td>
<td>9,566</td>
<td>9,942</td>
<td>9,878</td>
<td>9,906</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Total 2015 R&D ~$9.9 billion

Chemical & Engineering News, 94 (16), 18-20 (2016)
Univ R&D Expenditures - ChE, $M

<table>
<thead>
<tr>
<th>Institution</th>
<th>2015</th>
<th>2014</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>U of Texas, Austin</td>
<td>51.9</td>
<td>48.9</td>
<td>14.0</td>
</tr>
<tr>
<td>Texas A&M U</td>
<td>38.1</td>
<td>21.5</td>
<td>12.1</td>
</tr>
<tr>
<td>Massachusetts Inst. of Technology</td>
<td>33.2</td>
<td>32.8</td>
<td>13.7</td>
</tr>
<tr>
<td>Georgia Tech</td>
<td>32.7</td>
<td>31.1</td>
<td>13.8</td>
</tr>
<tr>
<td>California Inst. of Technology</td>
<td>27.7</td>
<td>14.3</td>
<td>5.9</td>
</tr>
<tr>
<td>North Carolina State U</td>
<td>24.7</td>
<td>29.5</td>
<td>15.2</td>
</tr>
<tr>
<td>U at Buffalo</td>
<td>23.8</td>
<td>24.4</td>
<td>2.0</td>
</tr>
<tr>
<td>U of Minnesota</td>
<td>20.8</td>
<td>16.6</td>
<td>8.7</td>
</tr>
<tr>
<td>U of Colorado</td>
<td>17.6</td>
<td>14.6</td>
<td>6.3</td>
</tr>
<tr>
<td>U of Delaware</td>
<td>15.0</td>
<td>17.8</td>
<td>7.2</td>
</tr>
<tr>
<td>U of Tulsa</td>
<td>14.3</td>
<td>17.1</td>
<td>3.8</td>
</tr>
<tr>
<td>U of Michigan</td>
<td>13.4</td>
<td>13.6</td>
<td>8.9</td>
</tr>
<tr>
<td>Pennsylvania State U</td>
<td>12.9</td>
<td>12.4</td>
<td>17.4</td>
</tr>
<tr>
<td>Purdue U</td>
<td>12.2</td>
<td>14.6</td>
<td>5.5</td>
</tr>
<tr>
<td>U of Oklahoma</td>
<td>11.8</td>
<td>10.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Johns Hopkins U</td>
<td>11.7</td>
<td>10.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Iowa State U</td>
<td>11.6</td>
<td>11.3</td>
<td>3.6</td>
</tr>
<tr>
<td>U of California, Santa Barbara</td>
<td>11.5</td>
<td>9.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Total</td>
<td>384.9</td>
<td>351.2</td>
<td>159.4</td>
</tr>
</tbody>
</table>

Note: Total 2015 academic ChE R&D ~$895 million

Top 18 academic ChE programs by R&D $
Conclusions

- **Significant growth in biological engineering and nanotechnology areas**
 - In the last 15 years, >50% of young faculty hired in these areas, including a significant number of non-ChEs
 - Greatly expands the scope of ChE and promotes multidisciplinary research
 - More recently, energy, sustainability and manufacturing have emerged as significant directions for ChE research

- In academia, a significant **shift** toward pure science, away from core ChE areas

- **A disconnect** in faculty hiring vs industry needs

- **Federal government is the largest source for academic R&D**
 - NIH, DoE, DoD, NSF, NASA, …

- In constant $, total federal R&D funds essentially **constant for ~15 years**

- Important role of **Centers** – ERCs, MRSECs, EFRCs, BERCs

- Important role of **DoE labs**

- Major chemical companies invest ~3.4% of sales on R&D