

Chemical and Commodity Processing Focus Area PI technologies can yield enormous energy savings in the Chemical Process Industries (CPI) and refineries. RAPID will manage a broad portfolio of PI activities in this sector, coordinated by the University of Texas and University of Houston

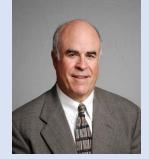
Vision

Research, develop, and demonstrate intensification in selected key processes in major commodity markets with >20% improvement in energy efficiency using relevant testing environments. Pilot and commercial processes will be used as test beds supported by a strong modeling and simulation foundation. Key unit operations include dividing wall columns, reaction-enhanced separation, amine gas separation, solids processing, paraffin-olefin separation, brackish water treatment, ionic solvent extraction, water separation, and utility systems

Objectives

- Develop screening guidelines for integration of novel reaction and separation modules that will provide stable, safe, and economical modular chemical process.
- Select test beds to validate design tools for process intensification in modularized units developed by Modeling and Simulation Focus Area.
- Operate separation processes dynamically to improve yields and safety for a variety of petrochemical feedstocks.
- Develop a roadmap for CPI that includes different reaction catalysts, membranes, and traditional and novel separations.

Key Approaches


- Identify explicit connections between properties of membrane materials, ionic liquids, and process performance using lab and pilot plant testing.
- Evaluate in situ separation/removal of reaction products using novel reactor designs.
- Examine unsteady-state (dynamic) operation to improve performance and energy used of unit operations and the need for new control strategies and sensors.
- Determine how thermal storage and smart materials can be effectively used in utility systems in process plants.
- Test design tools developed by Modeling and Simulation Focus Area on pilot plant facilities.

Expected Outcomes

- Through collaboration with existing industrial consortia, identify and screen key chemical processes where intensification will have major economic, energy, and environmental impacts without operational limitations.
- Validate design tools for process intensification operations
- Operate and analyze results from commercial and pilot test beds via academic/industrial collaboration.

Contacts

Thomas Edgar, Ph.D.

Lead - Chemical and Commodity Processing Focus Area, The University of Texas

Email: tfedgar@austin.utexas.edu phone: 512-471-3080

Ramanan Krishnamoorti, Ph.D. Co-Lead - Chemical and Commodity Processing Focus Area, University of Houston

Email: ramanan@uh.edu phone: 713-734-4307

> The RAPID institute's focal point for the chemical Process Industries