Achieve Test Run Objectives with Advance Preparation

- and Real Time Reports
- Charles D. Herzog
- Retired Chemical Engineer

Charles Herzog is a retired chemical engineer from the petrochemical and oil refining industries. His experience includes process design, plant startups, test runs, and process control. He was a pioneer in ethylene plant advanced process control in the 1980s, and was awarded a patent for the 'Heat and Material Balance Method of Distillation Process Control' in 2004. Charles graduated from Rice University with B.A. and M.Ch.E. degrees and was a professional engineer in Texas.

Charles was a soccer referee for 25 years and enjoys his long-time hobbies of piano, cycling, and chess in retirement.

Sept 22-23, 2025, University of Houston

Sept 22-23, 2025, University of Houston

Types of Test Runs

- Performance guarantee / capacity test
- Root cause analysis
- Custody transfer validation
- Evaluation of existing utility system for proposed expansion
- Process control response test

Sept 22-23, 2025, University of Houston

Test Run Preparation

- Confirm material balance envelope(s)
- Prepare Excel calcs and reports, and operator displays in advance
- Obtain or create a simulation of the system
- Tune DCS controllers if necessary
- Verify DCS data acquisition / migration to Excel
- Synchronize lab data with DCS data
- Make a plan to reconcile data into overlapping balances

Sept 22-23, 2025, University of Houston

Material Balance Envelope for Crude Oil Unit

Sept 22-23, 2025, University of Houston

Material Balance Envelope for Crude Oil Unit

Sept 22-23, 2025, University of Houston

Confirm Material Balance Envelope

- Use daily material balance calcs as a starting point
- Normally closed lines must be included
- Agree how to account for any flaring during the test
- Identify any un-measured lines crossing envelope
- Try to use single-phase lines for orifice flow measurement
- Confirm material balance closure prior to test

Sept 22-23, 2025, University of Houston

Orifice Meters Work Best with One-Phase Flow

Sept 22-23, 2025, University of Houston

Distillate Product Rate is Reconciled Against Tank Volume

Sept 22-23, 2025, University of Houston

Downstream Data Reconciles Product Rate

Sept 22-23, 2025, University of Houston

Confirm Envelope with Downstream Unit

Sept 22-23, 2025, University of Houston

Identify Problems **BEFORE** Test Begins

Sept 22-23, 2025, University of Houston

Evaluate Future Capacity of Refrig Compressor and Condenser

Sept 22-23, 2025, University of Houston

Sources of Flaring During Test

- Venting of non-condensibles from exchangers
- Exceeding capacity of condensing heat exchanger
- Diversion of off-spec product
- Increasing the feed too rapidly can result in flaring

Sept 22-23, 2025, University of Houston

What Happens if Feed Increases too Rapidly?

- Control system may fail to keep unit steady
- Equipment constraints may become active prematurely

Sept 22-23, 2025, University of Houston

Condenser Constraint Causes Test Failure

Sept 22-23, 2025, University of Houston

Synchronize Lab Data with DCS Data

- 1. Create a 'Lab Data' page on the Operator console
- 2. List all samples to be taken during the test
- 3. Operator clicks 'Sample Caught' as sample is drawn
- 4. Lab results are saved according to time sample is caught

Sept 22-23, 2025, University of Houston

Synchronize Lab Data with DCS Data

Crude Oil	0		
laphtha	0	Sample	
Kerosene		Caught	
Gas Oil			

Sept 22-23, 2025, University of Houston

Obtain or Create a Simulation of the System

- Often there is an existing simulation available
- Use simulators for balances and density calculations
- Simulation can help identify certain problems
- Simulating the system adds credibility
- Agreed simulation leads to report acceptance

Sept 22-23, 2025, University of Houston

Use Simulation to Identify Root Cause

Sept 22-23, 2025, University of Houston

On Site Pre-Test and Test Activities

- Vary feed rate during pretest to tune controllers
- Bring plant to test run conditions SLOWLY
- Get products on spec before increasing feed
- Ensure levels are steady before increasing feed
- Provide real-time reports for Operations

Sept 22-23, 2025, University of Houston

Test Run Spreadsheet

Use spreadsheet for most functions:

- Data Acquisition / Flow Compensation
- Heat and material balancing
- Management reports
- Saving intermediate results of all complex calcs

Sept 22-23, 2025, University of Houston

Test Run Spreadsheet

- Only the spreadsheet 'Owner' changes formulas
- Owner provides data entry areas as necessary
- Exercise care in copying and pasting formulas
- Naming cells or ranges eliminates some errors

Sept 22-23, 2025, University of Houston

Data Acquisition

Establish a single data acquisition sheet for raw data

- Create a data block for every flowmeter in the system
- Include columns for temp, press, and compensation calcs
- Verify instrument ranges from latest instrument data sheets
- Include all related tags in the data acquisition list
- Include 'redundant' tags at upstream or downstream units

Sept 22-23, 2025, University of Houston

Typical Data Block

Tag: FI-1000	Desc: Ethylene Product Units: Mlb/hr						
Flow: 120.0	Oper P: 18	800 psi	Oper	T: 60°	° F Den	s 24.0	lb/cf
Time	Raw Flow	Press	Temp	Dens	Factor	Comp	low
0100	112.0	1820	58.2	24.1	1.002	112.2	
0115	112.2	1819	58.1	24.1	1.002	112.4	
0130	112.3	1819	58.1	24.1	1.002	112.5	
	Simulator calculates density for compressible fluids				Ensure continuity with reference density		

Sept 22-23, 2025, University of Houston

Consider Using a Tool to Create Data Blocks

	Add New Process Liqu		
	Tag Name	fi-1	
C+	Description	overhead	
Steam	Flow Units	lb	
	Time Units	hr	
Condensate	Gravity Units	lb / cu ft	
Oorigensate	Flow Compensation Type	Liq Mass	
	Base Gravity Measurement	not measured	
Process Liquid	Flow Gravity Measurement	none	
	Temperature Tag	ti-1	
Process Gas	Gravity Tag	gi-1	
	Full Scale Flow	100.00	Mlb / hr
	Base Gravity or Density	50.00	lb / cu ft
	Design Temperature	90.00	° F
	Grav / Dens at Design Temp	49.00	lb / cu ft

Sept 22-23, 2025, University of Houston

Establish Flow Compensation

- Engineering units may be mass, volume, or std volume
- Flow compensation equation depends on units of flow
- Create columns for each flow tag:
 - "Raw" flow from DCS
 - Compensating temperature
 - Compensating pressure
 - Molecular weight or base gravity
 - Flowing gravity for liquids
 - Compensated flow

Sept 22-23, 2025, University of Houston

Orifice Flow Meter Compensation

- Typical orifice measures differential pressure ($\triangle P$)
- Mass flow proportional to $(\Delta P \times \rho)^{\frac{1}{2}}$
- Flow meter compensation accounts for density
- L.K. Spink is a reference for flow compensation

Sept 22-23, 2025, University of Houston

Frequently Used Compensation Equations

- Vapor Streams:
 - P, T, MW compensation for compressibility > 0.9
 - Typical Eng Units are Mass or 'Standard Vapor Volume'
- Liquid Streams:
 - Liquid density independent of pressure
 - Estimate slope of density vs temperature
 - Standard volume (e.g., barrels) use different equations

Sept 22-23, 2025, University of Houston

Use GPSA Tables for Oil Products

GPSA Fig 23-10

Gravity vs Temp

Common Problems to Avoid

- Allowing insufficient time and resources to prepare
- Using the incorrect flow compensations
- Failing to create reports and operator screens
- Failing to review reports with Operations
- Failing to verify balances before test
- Failing to tune DCS control loops

16th STS-AIChE Southwest Process Technology Conference Sept 22-23, 2025, University of Houston

Create a Tool for Operations Staff

- Establish flexible test run report with user-entered start and end times
- Show current unit performance vs test run criteria
- Make reports available to Operations during test
- Having a computer-savvy person on the team helps
- Make certain that operations staff understand report format and calculations <u>before</u> actual test begins

Sept 22-23, 2025, University of Houston

Thank You!

16th STS-AIChE Southwest Process Technology Conference Sept 22-23, 2025, University of Houston

Standard Vapor Comp vs Mass Flow Comp

Vapor Mass Flow Compensation:

• Comp Factor = $(P/P_0 \times T_0/T \times MW/MW_0)^{1/2}$

Standard Vapor Flow Compensation:

Comp Factor = $(P/P_0 \times T_0/T \times MW_0 /MW)^{1/2}$

Note: Subscript '0' Refers to Instrument Data Sheet

Sept 22-23, 2025, University of Houston

Standard Liquid Comp vs Mass Flow Comp

Example of Standard Liquid Flow Units:

Standard Barrels Per Day (BPD)

Standard Barrels are Referenced to 'Base Gravity'

Base Gravity = GB = Specific Gravity at 60°F

The base gravity is a function of composition only

Sept 22-23, 2025, University of Houston

Standard Liquid Comp vs Mass Flow Comp

Mass Flow Compensation:

Comp Factor =
$$(\rho / \rho_0)^{1/2}$$

 $\rho = \rho_0 + \text{slope x } (T - T_0)$

Standard Liquid Flow Compensation:

Comp Factor =
$$(GF/GF_0)^{1/2}/(GB_0/GB)$$

GF and GF₀ refer to flowing gravity of actual liquid and design liquid

