16th STS-AIChE Southwest Process Technology Conference

- Mass Transfer Rate Based Simulation of Liquid Treaters
- Prashanth Chandran & Ralph Weiland
- Affiliation- Prashanth Chandran is Technical

Development Lead at & Ralph Weiland is Chairman at Optimized Gas Treating Inc.

16th STS-AIChE Southwest Process Technology Conference

Speaker Bio

I work at Optimized Gas Treating (OGT) as a Senior Applications Engineer.

Education-E.I.T. Certification from the Texas Board of Professional Engineers and have a Bachelor's Degree in Chemical Engineering. Also, hold an MBA from the University of Houston, Clear Lake, T X . I have experience gained from employment in EPC Industry and in the manufacture of Mass Transfer & Heat Transfer products.

I love football and an avid fan of Houston Texans

Sept 22-23, 2025, University of Houston

Outline

- Introduction
- Motivation (Why Rate-based?)
- Model Development
- Model Validation against plant data
- Case Study Application to LPG treating
- Comparison of an ideal stage against real internals
- Ongoing and Future Directions

Liquid-Liquid Extraction

- Essential step in several chemical processes
- Applications
 - Refining
 - Aromatics removal from Lube Oil
 - Aromatics removal from Gasoline
 - Natural Gas Processing
 - LPG and Propane treating
 - Removal of CO₂, H₂S, COS and Mercaptans
 - Chemical
 - Pharmaceuticals & Biotechnology

Liquid-Liquid Extraction (Contd.)

- A slow mass transfer process
- Transfer between two dense phases
- Operated at low fluid velocities
 - Emulsification
 - Entrainment
- Factors affecting separation
 - Phase Equilibria
 - Fluid properties
 - Internals
 - Reactions in the system

Current Modeling Approaches

- Use of ideal stage models
- Rules of thumb for selecting number of stages
- Tray efficiency and HETP

Why Rate-Based?

- Years of ProTreat® user feedback
- Rules of thumbs are often inaccurate
 - Doesn't extend to all applications
 - Fails to predict behavior for different solutes
- Scarce literature on efficiency and HETP
- Rate models are well suited for slow mass transfer
 - Tray efficiency 5 to 20 %
 - HETP 10 to 20 feet
- Physically realistic
 - Accounts for true mass transfer internals and fluid properties

Why Rate-Based? (Contd.)

- Lack of commercial models
- Leverage ProTreat's Gas Treating Model
 - Rigorous and accurate electrolytic thermodynamics for amine treating
 - Well established, accurate and time-tested rate model for gas treating, carbon capture and sulfur recovery
 - Flexible flowsheeting software

Rate Model

Reference: https://www.schulzpartner.com/products/thermal-processes/liquid-liquid-extraction

Rate Model - Segment Equations

System of Non-Linear Equations

- Material Balance
- Liquid-Liquid Equilibria
- Mass Flux Equations
- Interface Energy Balance
- Bulk Phase Energy Balance

Solution:

- Phase Flows, Composition, Temperature
- Interface Composition and Temperature
- Component Fluxes

Rate Model

Reference: https://www.schulzpartner.com/products/thermal-processes/liquid-liquid-extraction

Features implemented

Sieve Trays

- Hole Size
- % Open Area
- Tray spacing
- Downcomer clearance

Packings

- Packed Depth
- User Defined Packing
 - Surface Area
 - Void Fraction
- Existing Packing Database

Spray Column

- Mass Transfer Zone Depth
- Distributor hole size
- Distributor total hole area

- Select heavy or light phase as dispersed
- Hydraulics Rate or size columns
- Physical and Reactive solvents

Diagnostic Benefits

- Sauter Mean Diameter of dispersed phase
- Interface compositions and fluxes
 - Understand operating regimes
 - Phase equilibria limited
 - Mass transfer limited On which phase?
- Interfacial Area
- Liquid-Liquid Interfacial Tension
- Hydraulic outputs and warnings

Model Validation – Plant Data Used

- Total of 15 LPG treaters
 - 7 Sieve Tray Columns
 - 8 Packed Columns
- Solvent used MEA (1), DEA (10), MDEA(4)
- Up to 2.5 mol% H₂S
- Up to 4000 ppm Total Mercaptans and COS

Plant Data – Trays

- Tray diameter was known in all cases
- 10 to 25 Sieve Trays in each
- Tray diagrams were not available in any of the cases
- Assumptions for trays
 - 2 feet spacing
 - ¼ inch holes
 - 70% Active Area
 - 8% Hole Open Area

Plant Data – Packings

- 20 to 40 feet of packing
- 3 cases using 2" Raschig Rings
- 2 cases of 1" Raschig Rings
- 3 Unknowns Assumed to be 2" Raschig Rings

Model vs Data – H₂S

- H₂S in almost all cases were reported to be < 1 ppm
- Simulated predictions were in the range of 0.3 2 ppm

Model vs Data – H₂S

Model vs Data – Mercaptans and COS

Case Study - LPG Treating

- Removal of H2S, CO2 and other trace Sulphur species (COS and mercaptans)
- Solvent DEA
- Compare performance of a single ideal stage against actual internals

Reactions – Mass Transfer Enhancement

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$Am + H^+ \rightleftharpoons AmH^+$$

$$CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-$$

$$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$$

$$2 Am + CO_2 \rightleftharpoons AmH^+ + AmCOO^-$$

$$H_2S \rightleftharpoons H^+ + HS^-$$

 $HS^- \rightleftharpoons H^+ + S^{2-}$

$$HS^- \rightleftharpoons H^+ + S^{2-}$$

LPG Treater

LPG Feed

- 400 US Gal/min
- 5000 ppm CO₂
- 5000 ppm H₂S
- 500 psig
- Dispersed phase

Solvent

- 30 wt% DEA
- 100 US Gal/min
- Continuous Phase

Single Ideal Stage

Internals Comparisons

Internals	Specs	Performance	
		CO ₂	H ₂ S
		ppmv	
Ideal Stage	1 Equilibrium Stage	9	151
Sieve Tray	2-ft Spacing 10-mm Hole, 10 % Open Area 5 Trays	197	207
Packing	2" Raschig Rings 5.8 Feet	213	157
Spray Column	10-mm Distributor Holes 15 % Open Area 44 Feet	136	154

Internals Comparisons

Internals		Performance	
		CO ₂	H ₂ S
Sieve Tray	Overall Efficiency	11 %	20 %
Packing	HETP (feet)	11	5.8
Spray Column		63	44

Ongoing & Future Directions

- Beta testing with customers
- Validation against operating plant data
- To be included in the upcoming OGT ProTreat® 9.0 release
- Implement agitated internals (RDC and Pulsed)
- Implement additional Mass Transfer and Hydraulic correlations
- Explore other applications apart from Propane and LPG treating

