Decarbonizing Energy sector: Low-Carbon Hydrogen and Ammonia as energy carrier

Hady Abdulhady – thyssenkrupp Uhde USA
Hady Abdulhady is the Director of Business Development and Sales of thyssenkrupp Uhde for Ammonia and Fertilizers technologies, and responsible for North American region.

With over 15 years of experience in Hydrogen/Syngas and Ammonia technologies in Middle East and USA, Hady held different roles from project management, application engineering and business development throughout his career.

Prior to joining thyssenkrupp Uhde, Hady worked with KBR in USA, and with Linde in Saudi Arabia and USA, focusing on Technology Licensing & Commercialization as well as EPC.

Hady holds a bachelor degree in Chemical Engineering from Al-Baath University and an Executive MBA in Energy candidate at the University of Oklahoma.
Korean Hydrogen Roadmap
“the roadmap notes the government’s long-term aim of building
a specialized hydrogen pipeline network across the country
while the development of hydrogen-receiving infrastructure
is set to begin in 2022”
www.csis.org/analysis/south-koreas-hydrogen-industrial-strategy

“Decarbonization

EHB (European Hydrogen Backbone) group presents
a vision for a 39,700km hydrogen pipeline infrastructure in 21 countries

OCI to charter ammonia-fueled vessels
OCI NV -- the world's largest ammonia producers -- announced two new
charter ammonia-fueled vessels

More than 85% of export-oriented low-carbon hydrogen projects plan to ship ammonia, not H2
transition/more-than-85-of-export-oriented-low-carbon-hydrogen-projects-plan-to-ship-ammonia-not-h2/2-1-1144059

Import of green energy: RWE builds ammonia terminal in Brunsbüttel

RWE AG

OCI Announces ESG StrategyFocused on Capitalizing on the Hydrogen Opportunity
OCI NV

Decarbonization
Key Drivers for Transition

- Zero-Carbon Goals
- Carbon Taxes
- Incentive Programs

Key Drivers for Green…
- High availability of renewables
- Emerging electrolysis technologies
- Localized production

Key Drivers for Blue…
- CCS/CCU availability
- Abundance of Natural Gas
- Lower LCOH/LCOA
- Large Capacities
Ammonia as Hydrogen carrier

Why Ammonia?

Transport of hydrogen

- Low volumetric energy density
- High pressure to transport as a gas or extremely low temperature of -253 °C for transport as a liquid
- High effort/energy input
- Infrastructure needs to be developed

Transport of ammonia

- High hydrogen density (17.8 wt-%)
- -33 °C for transport as a liquid
- High, but known effort
- Transport by ship is proven technology
- Large-scale infrastructure available

Transport of NH₃ over long distances is state of the art
Green Ammonia as energy carrier – Set up along the whole energy supply chain

The complete solution from one source

Ammonia production

Wind/solar/hydro

Electrolyzer

N\textsubscript{2}

Air separation unit

Ammonia cracking

Ammonia storage, loading & unloading

Transport

Power plants

Fuel

Green steel, Chemicals, fuel cells

Ammonia usage for energy transport, utilization as energy carrier or re-conversion to hydrogen
Ammonia New Markets: Non-fertilizer Low Carbon Ammonia Forecast

Low Carbon Ammonia demand forecast – base case
Short-term vs. Long-term trend

- Limited demand potential for fertilizers as long as urea dominated N application
- Demand for power generation to stagnate as coal power plants get decommissioned
- Demand marine fuels to become the biggest LT driver of ammonia consumption – not many alternatives to meet IMO 2050

Japan to drive huge surge in ammonia demand for power generation – but note that it doesn’t have to be green by 2030

Ammonia demand as a H2 carrier dependent on the development of cracking tech.

Ammonia not needed to meet IMO 2030 targets – but some shipping companies will still invest

Source: Argus Media Group © 2021
Renewable Energy Installations – Enough for Green Ammonia / Power-to-x?

Share of Primary Energy from Renewable Sources (2019)

Renewables Capacity Additions by Country in MW (2020-2029)

By the end of the decade, non-hydropower renewables capacity is expected to grow by just over 1,400 GW, with a total of 2,770 GW

Source: Fitch Solutions, Global Renewables Market Outlook, September 2020

1 Source: Fitch Solutions, Global Renewables Market Outlook, September 2020
Decarbonizing Conventional Ammonia Process
Conventional Ammonia Plant Block Diagram

- Natural gas feed
- Process steam
- Fuel
- Combustion air
- Process air

Primary reformer
- CO₂ shift
- CO₂ removal

Secondary reformer
- CO₂ shift

CO₂ removal

Syngas compressor

NH₃ and H₂ recovery

NH₃ synthesis

Methanation

Refrigeration

NH₃ product
Carbon Emissions

Sources of CO₂ Emission from Conventional Ammonia Production

Ammonia plant: Two points of CO₂ emission:

- Conventional plant with steam reformer: reformer flue gas
- Conventional plant with autothermal reformer: flue gas from fired heater

Sources of CO₂ Emission from Conventional Ammonia Production

Natural Gas → Reforming → Purification → Ammonia synthesis → ammonia

- CO₂ in flue gas
- CO₂ vent

- Low CO₂ quality, low pressure
- High CO₂ quality, low pressure
Low Carbon Ammonia Process
Low Carbon Ammonia

First Approach

Recovering flue-gas CO₂ in addition to standard CO₂ recovery

Carbon Recovery Rate: up to ~ 68-73% without FGT
~ 95% with FGT
Low Carbon Ammonia

Second Approach

Plant with ATR: 2 points of CO\(_2\) emission to be tackled in case CO\(_2\) emission shall be avoided

Carbon Recovery Rate: 89-94%
Low Carbon Ammonia

Second Approach

Plant with ATR, optimized: only 1 point of CO₂ emission to be tackled in case CO₂ emission shall be avoided

Almost no CO₂ in flue gas

Carbon Recovery Rate: up to 99%

* Lower H₂ recovery rate
Reformer Types
CO₂ Capture: Steam Reformer (SMR) vs. Autothermal Reformer (ATR)

Comparison

Steam Methane Reformer:
- Heat for reforming is supplied by combustion and heat transfer into the process equipment (reformer tubes)
- High amount of flue gas for preheating of inlet streams and steam superheating

Autothermal Reformer:
- Heat for reforming is supplied by combustion of a portion of the feedstock inside the process vessel ⇒ more feedstock needed
- Separate fired heater needed for preheating of ATR inlet streams
Reformers Comparison
SMR vs. ATR

SMR

- **Advantages:**
 - Reference plants available
 - Syngas composition is already as required d/s reformer section (integrated Ammonia plant with Front/Back End) → No ASU necessary
 - Better CAPEX for small capacities

- **Disadvantages:**
 - More CO₂ in flue gas → higher CAPEX for CO₂ Removal unit
 - Large capacities has no little gain from economy of scale

ATR

- **Advantages:**
 - Less CO₂ in Flue Gas (overall approx. same amount of CO₂)
 - Blue Ammonia solution without flue gas scrubbing possible
 - Better CAPEX for large capacities
 - Blue Hydrogen as additional (by-)product possible
 - Easier integration/transition to Green Ammonia

- **Disadvantages:**
 - Higher CAPEX for smaller capacities
 - Higher space requirement for the overall plant
 - First reference is still being built (1.2 Million mtpa)

Best option depending on client’s requirements & boundaries
EPC Cost Estimate of ATR vs SMR

Assumptions

• Capacity 3,500 MTPD

• ASU is included for ATR cases

• Flue gas scrubbing system and additional hydrogen for fuel are included for SMR 97% CO2 recovery

• Carbon Capture equipment are included
Ammonia Cracking
Green Ammonia as energy carrier – Set up along the whole energy supply chain

The complete solution from one source

Ammonia usage for energy transport, utilization as energy carrier or re-conversion to hydrogen
Location of ammonia cracking
Centralized vs. local NH₃ cracking

1. Local small-scale cracking
 - No hydrogen infrastructure required
 - Advantages of ammonia transport up to consumer
 - Electrically heated process suitable
 - Additional ammonia infrastructure needs to be developed in parallel to hydrogen if available
 - Risks/restrictions for ammonia transport by train or truck
 - Higher specific investment/operation costs
 - Increased CO₂ footprint if electric power is not generated totally from renewables

2. Centralized large-scale cracking
 - Economy of scale
 - Integration into an existing regional hydrogen economy
 - Fired reactor technology suitable
 - Hydrogen infrastructure needs to be developed if not available
 - High effort for authorities’ approval

Centralized large-scale units can achieve higher energy efficiency and lower CO₂ emissions
Hydrogen from Ammonia - Ammonia cracking
thyssenkrupp Uhde developments

- Based on Uhde’s well proven SMR prop. equipment
- High catalytic NH₃ conversion to H₂ (above 98%)
- Purities adaptable to requirements of user
- Already proven in 1970’s in small-scale units
- Designed for large scale solutions up to 3,000mtpd
- State-of-the-art catalysts
Green ammonia to green hydrogen
Our technology, your market

Decision on:
- Product purity with respect to residual NH\textsubscript{3} and N\textsubscript{2} content
- Technology for last purification step (e.g. PSA, membrane)