natureoutlook

Engineering Inorganic-Organic Composites for Lithium-Ion **Batteries**

S. Lisa Biswal Dept. Chemical & Biomolecular Engineering

> September 7, 2023 **STS AICHE**

Sèbastien Thibault

Biswal Group: Engineering Soft Matter

Biswal Group: Engineering Soft Matter

Biswal Group: Engineering Soft Matter

Directed Paramagnetic Colloidal Assemblies

Multiphase Flows in Porous Media

Lipid and Protein-Based Biosensors

Composites for Lithium-Ion Batteries

Lithium-Ion Batteries

Lithium-ion batteries have become the energy storage of choice for our consumer electronics

Lithium-Ion Batteries

Lithium-Ion Batteries

iWatch 8: 1.19 W-h

iPad Pro: 36.71 W-h

iPhone 13: 12.41 W-h

16" Macbook Pro: 100 W-h

Lithium-Ion Batteries: Electric Vehicles

2023 Nisson Leaf: 200 miles 62,000 Wh

2023 Chevy Bolt: 260 miles 66,000 Wh

2023 BMW iX: 324 miles 110,000 Wh

Tesla Powerwall: 13,500 Wh

2023 Tesla Model 3: 350 miles 82,000 Wh

Compared to consumer electronics, automotive applications have more stringent technical requirements: Life: 10 years Cycle life: 1000 cycles Temperature range: -30 to 52 °C Cost: \$100/kWh

We are electrifying everything ...

Ding, Y., Cano, Z.P., Yu, A. *et al.* Automotive Li-Ion Batteries: Current Status and Future Perspectives. *Electrochem. Energ. Rev.* **2**, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z

Global demand for lithium-ion

Sources: Avicenne, Fraunhofer, IHS Markit, Interviews with market participants, Roland Berger

Why Lithium-Ion Batteries?

J.-M. Tarascon et al., Nature, 2001

Working Principle of Lithium-Ion Batteries

Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: a perspective. *Journal of the American Chemical Society*, 135(4), 1167-1176.

https://e-lyte-innovations.de/

Active Materials for Lithium Ion Batteries

➢ RICE ENGINEERING

Standard Graphite Anodes

Does not work for Silicon

Challenges of Silicon-based Anodes

Graphite: $6C + Li^+ + e^- \leftrightarrow LiC_6$

Compound and crystal structure	Unit cell volume (Å ³)	Volume per silicon atom (Å ³)
Silicon cubic	160.2	20.0
Li12Si7, (Li1.71Si) orthorhombic	243.6	58.0
Li14Si6, (Li1.71Si) rhombohedral	308.9	51.5
Li13Si4, (Li3.25Si) orthorhombic	538.4	67.3
Li ₂₂ Si ₅ , (Li _{4.4} Si) cubic	659.2	82.4

Volume change: 120% for Li_{1.7}Si 160% for Li_{2.3}Si 240% for Li_{3.25}Si 400% for Li_{4.4}Si

U. Kasavajjula et al., J. of Power Sources, 2007 Image: Argonne National Laboratory Choi, J. W. & Aurbach, D. (2016) *Nat. Rev. Mater.*

Strategies

- Expensive
 Synthesis
 methods
- Not amenable for large scale production
- Low cycle life/ poor rate capability
- Large capacity fade

ottom-up assembly, a-c. Annealed carbon-black dend

rnal channels during C deposition

Cycle number

Nature Materials. Apr2010, Vol. 9 Issue 4, p353

Our approach: Nanostructured Silicon

Gold-Coated Porous Silicon Film

Journal of Power Sources, 205 pp 426-432 (2012).

Lift-off Porous Silicon Films

<u>Chemistry of Materials (2012), 24(15) pp</u> <u>2998-3003</u> (2012).

του μπ

Macroporous Silicon Particulates

<u>Scientific Reports, 2:795</u> (2012). DOI:10.1038/srep00795

➢ RICE ENGINEERING

Polymer Binder Characteristics

Silicon Anodes with PAN

2.19

550

Attenuated Total Reflectance (ATR) FTIR for PAN

Polyacrylonitrile: PAN

Electronicstructure evolution upon thermal treatment of polyacrylonitrile: A theoretical investigation

J. L. Brédas and W. R. Salaneck

FIG. 1. Suggested molecular structure evolution of polyacrylonitrile under pyrolysis. From top to bottom: structure of polyacrylonitrile (PAN); structure of polyethyleno-methineimine (PEMI); structure of polypyridinopyridine (PPyPy).

The conductivity of the prepared PAN was determined to be 9.08×10^{-1} S/m, which augmented to 2.36 S/m after pyrolysis at 550 °C.

Cyclic Voltammetry

[™]RICE ENGINEERING²⁴

Galvanostatic Cycling

Galvanostatic cycling between 1 V and 0.01V

Solid-Electrolyte Interface (SEI)

Tapesh Joshi et al. J. Electrochem. Soc. 2014;161:A1915-A1921 Hui Wu et. al. Nature Nanotechnology, 2012, **7**, 310–315

Capacity Controlled Cycling + Additives

Capacity is limited to control the amount of lithium that intercalates into silicon

Advantage of PAN - ReaxFF

"ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations." - Tom Senftle

Ionic Conductivity Interfacial Mechanical Elasticity Adhesion **Better Battery** Performance Chemical Electronic Stability Conductivity LUMO_{binder} Snergy µanode

Bhati, M., Nguyen, Q. A., Biswal, S. L., & Senftle, T. P. (2021). Combining ReaxFF Simulations and Experiments to Evaluate the Structure–Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries. ACS Applied Materials & Interfaces, 13(35), 41956-41967.

ReaxFF Simulations Elucidate the Si/PPAN Interface

Layered oxide cathodes

Octahedral site

Both $LiCoO_2$ and $LiNiMnCoO_2$ falls in the hexagonal crystal structure

LiCoO₂ (LCO)

- □ High Cobalt content- Costly
- □ Thermally unstable

LiNiCoMnO₂ (NMC)

□ The current commercial NMC uses nickel, manganese and cobalt in equal proportions $(LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2)$

Ο

🔘 Li

🗅 м

□ **Co** limits the *anti-site mixing*, *Mn inactive Ni redox reactions* (Ni: +4 \leftrightarrow +3), during the beginning of cycling, then followed by *Co* at higher voltages.

 M Li O laye 	Ordered (e.g. layered)	Short-range Ordered	Fully disordered rocks	A ins obs the	little ignifican served i insertio	cation t volu n LiNi ₁ , n and e
	In	creasing level of disorder				
	(Aziz Abdel	lahi et al. Chem. Mater. 20	016.28.5373-5383)			

A little **cation disorder** and insignificant volume change are observed in LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ from the insertion and extraction of Li ions

Tetrahedral site

□ For better electrochemical performance level of orderings in the NMC system should be >1.2

[□] As the level of **disorders increases** accessibility of Li from the octahedral site becomes difficult. this leads to **lower material capacity**.

NMC Cathodes

NMC Cathodes have become mainstream

NMC cathodes are being used in the BMW i3, Chevy Bolt, and Nissan Leaf (on the grid side, it's the Tesla Powerwall).

Fu et al., Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals (DOI: 10.1016/j.joule.2017.08.019)

NMC 111 Preparation

NMC 111 Preparation

Intermediate spinel phase obtained in the twostep sol-combustion synthesis method

⊗RICE ENGINEERING

Silicon Anodes with CNTs

Carbon Nanotubes (CNTs):

- Electronically conductive
- Mechanically strong
- \rightarrow Can replace conductive agent, polymer binder, current collector

Matteo Pasquali

Conventional

Positive electrode Separator Negative electrode • Active materials CNT (Hori et al, Carbon, 2020)

Free-Standing

- Increase capacity by eliminating inactive components (dead weight, no capacity contribution)
- Potentially enable flexible, stretchable batteries

Silicon Anodes with PPAN on CNT fabrics

Material	Thickness (µm)	Mass loading (mg cm ⁻²)
Si/PPAN	15	1.00
Copper foil	9	8.60
CNT fabric*	5	0.14

Significant dead weight from metallic current collectors in battery electrodes can be reduced!

(*CNT fabric produced by collaborators using FC-CVD method)

[™] RICE ENGINEERING [™]

Silicon Anodes with Conductive Binder on CNT

Silicon Anodes with PPAN on CNT fabrics

Material	Thickness (µm)	Mass loading (mg cm ⁻²)
Copper foil	9	8.60
CNT fabric	5	0.14

In half-cell with Li, Si/PPAN on Cu has better capacity retention than Si/PPAN on CNT

When state of charge is controlled to 1000 mAh g⁻¹, Si/PPAN/CNT shows significant cycle life

How much Copper is in Batteries?

Cu

The greatest concentration of copper in electric vehicles is contained within the battery.

- Estimates show that for every kilowatt-hour of a lithium ion battery, 1.1 to 1.2 kilograms (kg) of copper is used.
 - As a result, projections show the potential for up to 600 kilotonnes of additional copper use by 2027.

Copper Content by Electric Vehicle Type

Copper Alliance

International Copper Association

The total copper content among the spectrum of electric vehicles includes the following:

- Electric bus 224–369 kg of copper per vehicle.
- Electric vehicle 83 kg of copper per vehicle.
- Plug-in hybrid electric vehicle 60 kg of copper per vehicle.
- Hybrid electric vehicle 39 kg of copper per vehicle.

Electric vehicle Cu demand

What have we learned?

Li-ion battery materials: present and future 2017 Materials Today

How close are we?

How close are we to Si based anodes?

Tesla Silicon Anode – 30% Silicon + 70% graphite – 20% increase in range

Continuing to Push the Limits

Material Synthesis:

Nanostructured silicon mitigates stresses and provides improved mechanical stability

PPAN Binder: Relives stress, improved mechanical properties

FEC: Protects anode from electrolyte degradation

Pairing with NMC Cathodes: Engineer the ratio and additives to match capacity differences

Reducing weight with CNT current collectors

Acknowledgments

Engineering Soft Matter – Colloidal and Interfacial Phenomena

Biswal Group: Ratnika Gupta Quan Anh Nguyen (Farasis Energy) Anulekha Haridas (EaglePicher) Botao Farren Song (Joby) Abirami Dhanabalan (Energ2) Madhuri Thakur (Farasis Energy)

Collaborators: Manav Bhati Tom Senftle Steven Williams Matteo Pasquali Juan Jose Vilatela

