MILP -A VERSATILE METHOD FOR PRODUCTION OPTIMIZATION

Ravi Nath

Nath Technology Solutions LLC ravi.nath1@outlook.com

AIChE STS meeting Houston, TX Dec. 5, 2017

© 2017 AICHE © 2017 NATH TECHNOLOGY SOLUTIONS LLC ALL RIGHTS RESERVED

Agenda

- Introduction
 - Optimization
 - Modeling philosophy

Examples

- Single time period modeling
 - 1. Simple Boiler
 - 2. Purchased Fuel Cost
- Multi time period modeling
 - 3. Inventory
 - 4. Start up delay
- Conclusions
- References
- Q&A

Introduction : optimization

- Optimization: is a method for determining the "best" for a "system".
 - "Best" according to a specified criteria (or objective function)
 - Ex: Maximize Profit, Minimize Cost etc.
 - "System"
 - Described by a set of equations (or constraints)
- Two categories: Design Optimization & Operations Optimization
- Production Optimization: is Operations Optimization of a production system.
 - Production System: refers to a larger scale system
 - Ex: A plant utility system, a production plant, not a unit op

Introduction : optimization

Popular optimization methods are:

– LP

_

- global optimum
- local optimum
- local optimum
- MILP

QP

NLP

- MIQP
- MINLP

global optimum local optimum local optimum

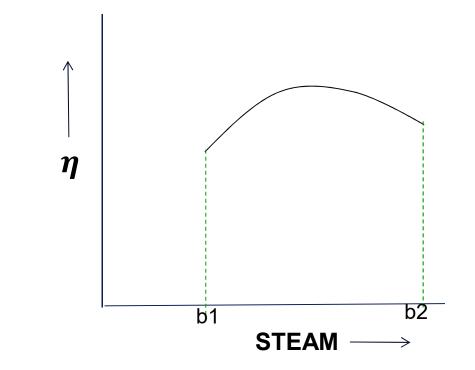
- SLP
- SQP

local optimum local optimum

Introduction : models

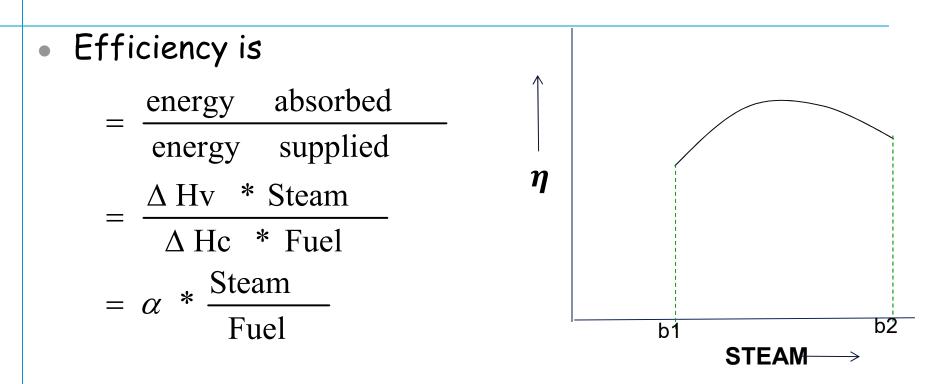
"Essentially, all models are wrong, but some are useful."
 George E. P. Box

- We will be dealing with algebraic linear models
 - $a X + b Y \dots \leq c \qquad \text{or} \qquad a X + b Y \dots c \leq 0$
 - a, b, c ... are constants
 - X, Y, Z ... are variables.
 - Most variable values are floating point (1.23)
 - Some variable values restricted to be binary (0/1)

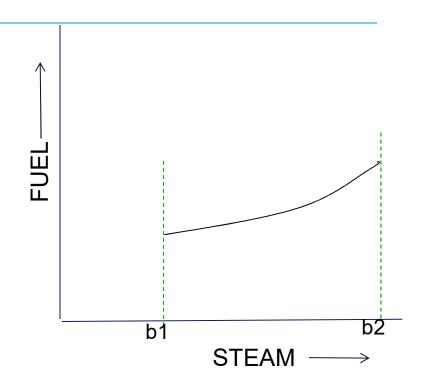

Introduction : modeling philosophy

- Keep the scope as large as possible
 - Preferably the entire system
- Keep modeling as simple as possible ... but not any simpler ¹
 - Start simple
 - Add complexity as needed

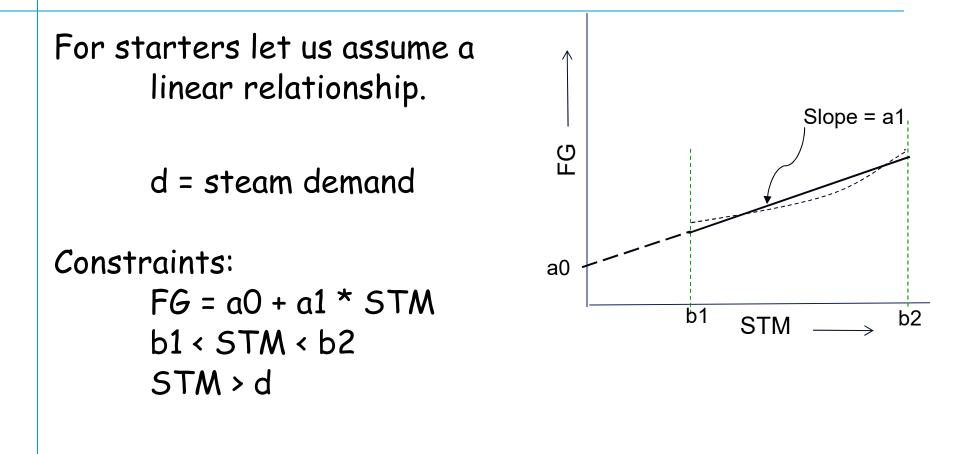
¹"Everything should be made as simple as possible, but not simpler"


- Albert Einstein rephrasing Occam's Razor

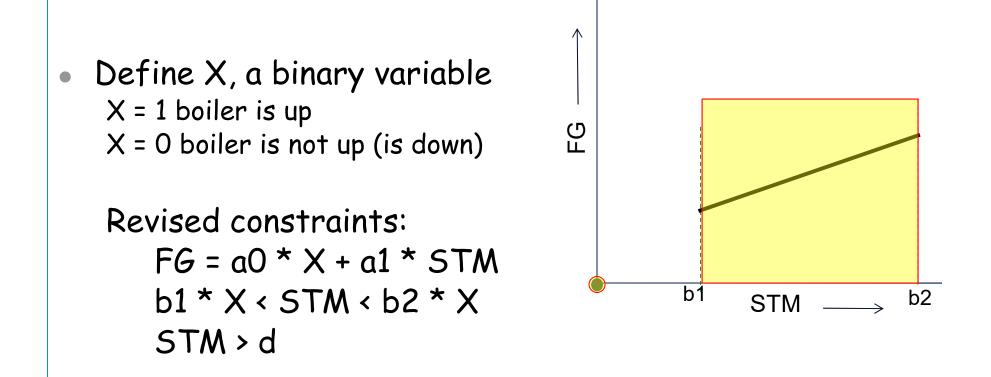
Conventional Wisdom is to use efficiency curves


- Usually narrow efficiency range over normal operating range
- Usually approximated by a quadratic

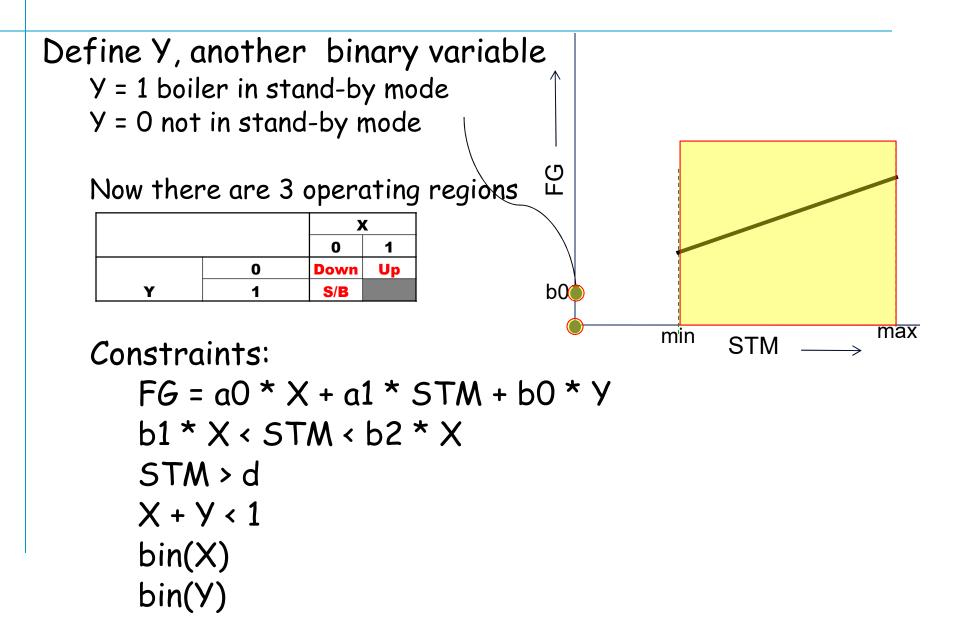
Is there a problem?



- The relationship has only 2 variables:
 - STEAM
 - FUEL


Plot FUEL vs. STEAM instead

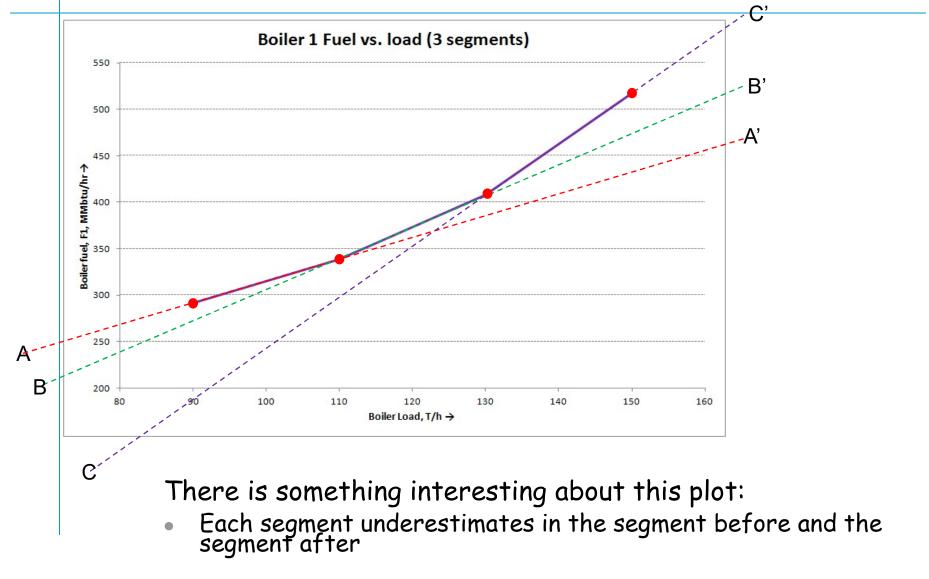
- This relationship is
 - Considerably more linear
 - is not going through a peak
 - could be approximated by linear segments
 - segment slopes are increasing with STEAM



But, is there a problem?

In essence we have 2 operating regions.

But, we are not limited to 2 operating regions ...


Example 1: Simple Boiler : Excel Solver model

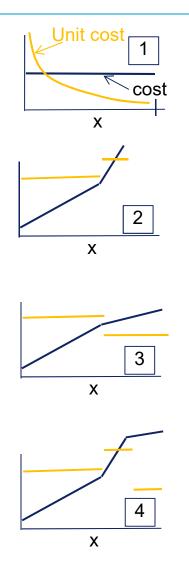
So

1	A	В	С
1	parameters:	a0	1
2		al	0.1
3		b1	50
4		b2	150
5		b0	2
6			
7	inputs:	d	30
8			
9	Indep variables:	х	1
10		Y	0
11		STM	50
12		FG	6
13			
14	obj fn:	FG	6
15			
16	constraints:		RHS
17	Bir LL	STM - b1*X ≥ 0	0
18	Blr UL	STM -b2*X ≤ 0	-100
19	demand satisfaction	STM - d ≥ 0	20
20	FG	FG - a0 X - b0 Y - a1 STM = 0	0
21	Unity	$X + Y \leq 1$	1

r Parameters				
Se <u>t</u> Objective:	\$C\$14			
To: <u>M</u> ax	• Mi <u>n</u>	○ <u>V</u> alue Of:	0	
By Changing Variable Cells:				
\$C\$9:\$C\$12				
Subject to the Constraints:				
\$C\$9 = binary \$C\$10 = binary			^	Add
\$C\$18 <= 0 \$C\$17 >= 0				<u>C</u> hange
\$C\$19 >= 0 \$C\$20 = 0				Delete
\$C\$21 <= 1				
				<u>R</u> eset All
			~	Load/Save
Ma <u>k</u> e Unconstrained Vari	ables Non-Neg	gative	L	
S <u>e</u> lect a Solving Method:	Sir	nplex LP	~	Options
Solving Method				
Select the GRG Nonlinear er linear Solver Problems, and				
<u>H</u> elp			<u>S</u> olve	Cl <u>o</u> se

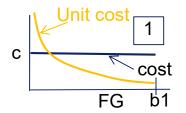
Example 1 : Boiler example

This fact could/should be used in efficient modeling of the boiler


Example 2: Purchase Fuel cost

Fuel Contracts

 Well defined but could be complicated


...

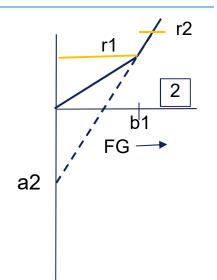
- 1. Take or pay
- 2. Excess penalty
- 3. Volume discount
- 4. Tier pricing

Example 2: Purchase Fuel cost (1)

1. Take or pay

- b1 = contract amount of energy
- c = contract fixed cost
- d = fuel gas demand
- FG = purchased energy
- COST = energy cost

Objective: min COST Constraints:


> FG < b1 FG > d

COST = c

Example 2 : Purchase Fuel cost (2)

Excess Penalty

Constraints: COST > r1 * FG COST > r2 * FG + a2

Purchase Fuel cost (2): Excel solver

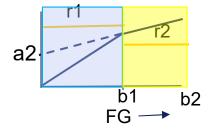
	A	В	C
1	parameters:	r1	2
2		r2	3
3		b1	100
4		a2	-100
5			
6	inputs:	demand	50
7			
8	Indep variables:	COST	100
9		FG	50
10			
11	obj fn:	COST	100
12			
13	constraints:		
14	cost1	$COST - r1^* FG \ge 0$	0
15	cost2	$COST - r2* FG-a0 \ge 0$	50
16	demand satisfaction	FG - demand ≥ 0	0

 $COST - r2* FG - a0 \ge 0$

demand satisfaction FG - demand ≥ 0

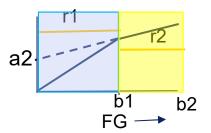
15 cost2

Example 3 : Purchase fuel cost (3)

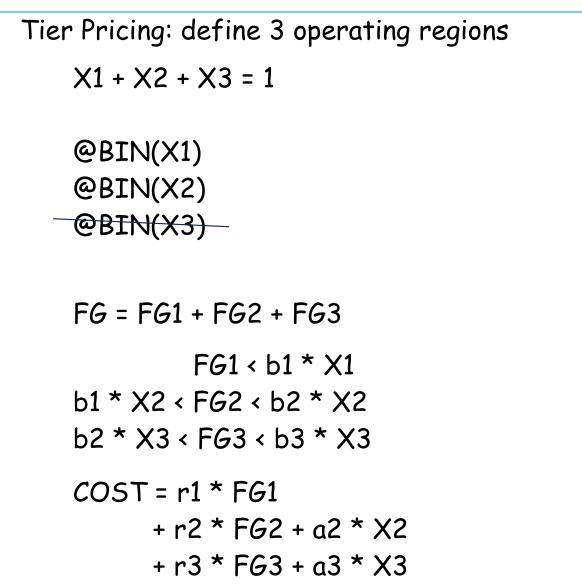

```
Model: define 2 regions
```

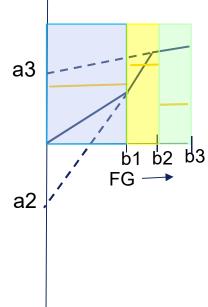
X1 + X2 = 1 @BIN(X1) @BIN(X2)

FG = FG1 + FG2 FG1 < b1 * X1

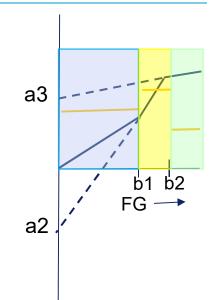

b1 * X2 < FG2 < b2 * X2

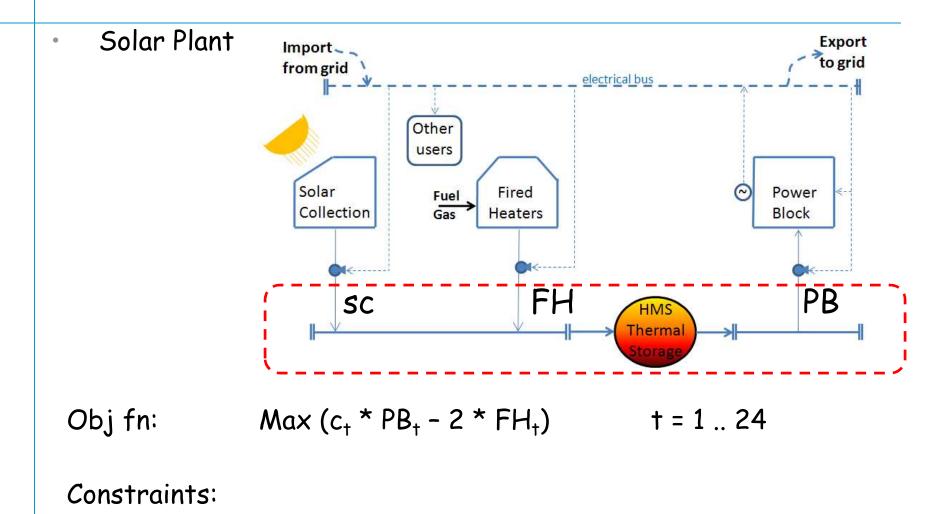
```
COST = r1 * FG1
+ r2 * FG2 + a2 * X2
```



Purchase Fuel fuel cost (3): Excel solver


	A	В	С
1	parameters	r1	2
2		r2	4
3		b1	100
4		b2	200
5		a2	-200
6			
7	inputs:	demand	50
8			
9	Indep variables:	FG1	50
10	14 million and 14 million and 19 million and	FG2	-
11		X1	1
12		X2	0
13			
14	obj fn	COST	100
15			5
16	constraints		
17	Unity	∑x -1 = 0	0
18	FG1 UL	b1*X1 - FG1 ≥ 0	50
19	FG2 LL	FG1 - b1*X2 ≥ 0	0
20	FG2 UL	b2*X2 - FG2 ≥ 0	0
21	demand satisfaction	$\Sigma FG - demand \ge 0$	0

	А	В	С
1	parameters	r1	2
2		r2	4
3		b1	100
4		b2	200
5		a2	-200
6			
7	inputs:	demand	<mark>150</mark>
8			
9	Indep variables:	FG1	0
10		FG2	150
11		X1	0
12		X2	1
13			
14	obj fn	COST	400
15			
16	constraints		
17	Unity	∑x -1 = 0	0
18	FG1 UL	b1*X1 - FG1 ≥ 0	0
19	FG2 LL	FG1 - b1*X2 ≥ 0	50
20	FG2 UL	b2*X2 - FG2 ≥ 0	50
21	demand satisfaction	Σ FG - demand ≥ 0	0


Example 2 : Purchase Fuel cost (4)



Purchase Fuel cost (4): Excel model

	A	В	С
1	parameters	r1	2
2		r2	4
3		r3	3
4		b1	100
5		b2	200
6		a2	-200
7		a3	0
8			
9	inputs:	demand	150
10			
11	Indep variables:	FG1	0
12		FG2	150
13		FG3	0
14		X1	0
15		X2	1
16		X3	0
17			
18	obj fn	COST	400
19			
20	constraints		
21	Unity	∑x -1 = 0	0.0
22	FG1 UL	b1*X1 - FG1 ≥ 0	0.0
23	FG2 LL	FG1 - b1*X2 ≥ 0	50.0
24	FG2 UL	b2*X2 - FG2 ≥ 0	50.0
25	FG3 LL	FG3 - b2*X3 ≥ 0	0.0
26	FG3UL	b3*X3 - FG3 ≥ 0	0.0
27	demand satisfaction	1 Σ FG - demand ≥ 0	0.0

Example 3: Modeling Multi-period Inventory model

$$TS_{t} = TS_{t-1} + sc_{t} + FH_{t} - PB_{t}$$

$$\Sigma FH < 20 TS_{t} < 30 PB_{t} < 15$$

Example 3: Modeling Multi-period Inventory model

/	A	В	С	D	Е	F		Н	Ĭ.	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	AA	AB
1	parameters:	b1		20		max F	H ger	nerati	on pe	er day	/																	
2		b2		20		max F	Bho	urly g	enera	ation																		
3		b3		30		TS cap	oacity	1																				
4																												
5	inputs:	С		3	3		3	3	3	5	11	11	5	5			5	5			8	11	15	15	15	11	5	
6		sc		0	0	0	0	0	1	3	6	9	12	15	18	21	18	15	12	6	1	0	0	0	0	0	0	
7																												
8			t = 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	sum
9																												
10	Indep variables:	FH		0	0		0	0	0	0		0	0	0				0						0	0	0	0	2
11		PB		0	0	0	0	0	0	0	20	9	12	15	18	20	19	3	0	0	1	0	20	20	10	0	0	
12																												
13																												
14	obj fn:	∑c * PB - 2 * FH		0	0	0	0	0	0	0	220	99	60	75	90	100	95	15	0	0	8	0	260	300	150	0	0	147
15																												
16	constraints:																											
17	PB capacity	b2 - PBt > 0		20	20	20	20	20	20		0		8	5	2	0	1	17	20					0	10	20	20	
18	TS	TSt	10	10	10	10	10	10	11		0	0	0	0	0	1	0	12	24	30	30	30	30	10	0	0	0	
	TS capacity	b3 - TSt > 0		20	20	20	20	20	19	16	30	30	30	30	30	29	30	18	6	0	0	0	0	20	30	30	30	
	sum (PB_EG)	b1 - ∑FH > 0																										
21																												
22							Sc	blar p	olan	t op	timu	im o	pera	tior	n													
23				3	5																							
24				2	0 —																							
25																												
26					5 —										1	1												
27				2	0 —					8				~				-	3			15	 c					
28				1	5 —					$ \land$		1	-	-	X			-						с				
29				1	0 -					1-								1_	1	1			— P	В				
30					5 —					Kr					1	1	15	/					— T					
31							••••			K														5				
32					0 -		•						10 11		45 4		10 1											
33					1	2	3 4	5	6 7	8	9 10	J 11	12 13	3 14	15 1	.6 17	18 1	9 20	21 2	2 23	24							

Example 4: Modeling boiler start up delay

Consider a boiler with start up delay, say 1 period
 Obviously multi period model

Base model: boiler model repeated for each time period

```
X_{t} + Y_{t} < 1

FG_{t} = a0 * X_{t} + a1 * STM_{t} + b0 * Y_{t}

b1 * X_{t} < STM_{t} < b2 * X_{t}

STM_{t} > d_{t}
```

How to add constraint to model delay?

Example 4: Modeling boiler start up delay

- Delay means,
 - the boiler status could be 1 in period t, if:
 - boiler was in stand-by (ie. Y = 1) in period t-1, or
 - Boiler was already up (ie. X = 1) in period t-1
 - the boiler status could <u>not</u> be 1 in period t, if:
 - boiler was completely off (ie. X = Y = 0) in period t-1

Example 4 : Modeling boiler start up delay

	А	В	С	D	E	F	G	Н	I	j	K	L	М	N
1	parameters:	aO		1										
2		a1		0.1										
3		b1		50										
4		b2		150										
5		b0		2										
6														
7	inputs:	d		0	0	100	100	0	0	0	100	100	30	
8			t = 0	1	2	3	4	5	6	7	8	9	10	
9	Indep variables:	X	0	0	0	1	1	0	0	0	1	1	1	
10		Υ	0	0	1	0	0	0	0	1	0	0	0	
11		STM		0	0	100	100	0	0	0	100	100	50	
12				62	50		a a a a a a a a a a a a a a a a a a a		2		Υ.	с ст.		sum
13	obj fn:	∑FG		0	2	11	11	0	0	2	11	11	6	54
14														
15	constraints:													
16	Unity	$X + Y \leq 1$		0	1	1	1	0	0	1	1	1	1	
17	Blr LL	STM - b1*X ≥ 0		0	0	50	50	0	0	0	50	50	0	
18	Blr UL	STM - b2*X ≤ 0		0	0	-50	-50	0	0	0	-50	-50	-100	
19	demand satisfaction	STM - d ≥ 0		0	0	0	0	0	0	0	0	0	20	
20		Xt - Xt-1 - Yt-1 ≤ 0		0	0	0	0	-1	0	0	0	0	0	

This is a workshop

Exercises:

- Modify the model so that the start up delay is 2 cycles (instead of 1).
 hint: Y must be 1 in the prior 2 periods before X could be 1 in the current period.
- 1. Further, modify the model so that each start up event incurs a fixed penalty.
- 2. Exercise the model and find the critical value of penalty above which the 2nd start up event becomes uneconomical.

Try these. Feel free to contact me (via e-mail) if you get stuck.

Conclusions

- MILP is a versatile modeling method especially for large systems
 - Discontinuous functions welcome (derivatives not needed)
 - Guaranteed "global" optimum
 - Fast execution
 - Mature technology
 - Robust, inexpensive, commercially available s/w
 - A limited version built into Excel
- As shown in the examples, MILP applies very well to optimization of utility systems.

References

- 1. Nath, R., "Real Time Optimization of an Industrial Power Plant", AIChE Spring Meeting, San Antonio, TX (April 2013)
 - Paper discusses single time period modeling of an industrial steam plant.
- 2. Salbidegoitia, I. et. al., "Operations Optimization of Concentrating Solar Power Plants", AIChE Spring Meeting, Houston, TX (April 2012)
 - Presentation discusses multi time period modeling of solar power plants.
- 3. Web resources (in alphabetic order)

Commercial solver s/w companies offer fairly decent learning material. I am familiar with the following (there are probably others as well):

- <u>www.fico.com</u>
- <u>www.lindo.com</u>
- <u>www.solver.com</u>

Q & A

