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Smalley’s Top Ten Human ProblemsSmalley’s Top Ten Human Problems

1.1. EnergyEnergy
2.2. WaterWater
3.3. FoodFood
4.4. EnvironmentEnvironment
5.5. PovertyPoverty

6.6. Terrorism/WarTerrorism/War
7.7. DiseaseDisease
8.8. EducationEducation
9.9. DemocracyDemocracy
10.10.PopulationPopulation

http://cohesion.rice.edu/NaturalSciences/Smalley/emplibrary/120204%20MRS%20Boston.pdf
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All of these problems can be All of these problems can be 
addressed with energy that isaddressed with energy that is

•• Clean Clean 
•• AffordableAffordable
•• AbundantAbundant
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Driving ForcesDriving Forces

•• Growing populationGrowing population
•• Rising standard of livingRising standard of living
•• Oil importsOil imports
•• Peak oilPeak oil
•• Global warmingGlobal warming
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Energy Flow in the United States
(2009)

http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_3.pdf



Energy Flow in the United States
(2009)

Net Imports = (25.16 – 4.21)/35.27 = 59.4% 



Historical Oil PriceHistorical Oil Price

http://en.wikipedia.org/wiki/Oil_price_increases_of_2004-2006

July 2008
~$147/bbl

Jan 2009
~$45/bbl

Jan 2011
~$90/bbl
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ybillion/da 1.1$
bbl
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nconsumptio bbl
import bbl 59.0

day
nconsumptio bbl mill 6.20
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$400 billion/yr Oil imports

$379 billion/yr Total imports

http://www.americaneconomicalert.org/ticker_home.asp

http://www.americaneconomicalert.org/ticker_home.asp
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•• Growing populationGrowing population
•• Rising standard of livingRising standard of living
•• Oil importsOil imports
•• Peak oilPeak oil
•• Global warmingGlobal warming



American geophysicist

Shell Oil research laboratory

Houston, TX

M. King Hubbert (1903-89)M. King Hubbert (1903-89)



US Oil Production 
Data through 1956 
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US Oil Production 
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US Oil Production 
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World Oil Production 
Deffeyes Prediction (2001) 
World Oil Production 
Deffeyes Prediction (2001)
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How good was his prediction?How good was his prediction?

http://www.hubbertpeak.com/

(May)



Driving ForcesDriving Forces

•• Growing populationGrowing population
•• Rising standard of livingRising standard of living
•• Oil importsOil imports
•• Peak oilPeak oil
•• Global warming Global warming 
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Recent CorrelationRecent Correlation
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Global Warming ProjectionsGlobal Warming Projections

Intergovernmental Panel on Climate Change
Business-as-usual scenario 
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Primary Energy = 11.2 kW heatPrimary Energy = 11.2 kW heat
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Advanced Lime Treatment Advanced Lime Treatment 

Biomass + Lime

Gravel

Air



Building the PileBuilding the Pile

~100 ft



Building the PileBuilding the Pile



Lignin RemovalLignin Removal
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Environments where organic 
acids naturally form 
Environments where organic 
acids naturally form

•• animal rumenanimal rumen
-- cattlecattle
-- sheepsheep
-- deerdeer
-- elephantselephants

•• anaerobic sewage digestorsanaerobic sewage digestors
•• swampsswamps
•• termite gutstermite guts



Why are organic acids favored?Why are organic acids favored?

The actual stoichiometry is more complexThe actual stoichiometry is more complex

CC66 HH1212 OO66 
 

2 C2 C22 HH55 OH + 2 COOH + 2 CO22 G = G = --48.56 kcal/mol48.56 kcal/mol

CC66 HH1212 OO66  3 C3 C22 HH33 OOH                     OOH                     G = G = --61.8 kcal/mol61.8 kcal/mol

CC66 HH1212 OO66 

 
acetate + propionate + butyrate + COacetate + propionate + butyrate + CO22 + CH+ CH 4  4  + H+ H22 O + HO + H22

glucose             ethanolglucose             ethanol

glucose          acetic acidglucose          acetic acid
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CC66 HH1212 OO66 
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glucose          acetic acidglucose          acetic acid

Methanogen inhibitor



Typical Product Spectrum 
at Different Culture Temperatures 
Typical Product Spectrum 
at Different Culture Temperatures

40oC 55oC 
C2 – Acetic 41 wt % 80 wt %
C3 – Propionic 15 wt % 4 wt %
C4 – Butyric 21 wt % 15 wt %
C5 – Valeric 8 wt % <1 wt %
C6 – Caproic 12 wt % <1 wt %
C7 – Heptanoic 3 wt % <1 wt %

100 wt % 100 wt %
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VaporVapor--Compression DesalinationCompression Desalination

Salt water

Distilled water
Brine

High pressureLow pressure

Heat

T = 100oC
P = 1.00 atm

T = 101oC
P = 1.04 atm



Dropwise Dropwise 
CondensationCondensation

Filmwise Filmwise 
CondensationCondensation

~2,000 Btu/(h·ft2·oF) ~42,000 Btu/(h·ft2·oF)



Laredo Desalination ProjectLaredo Desalination Project
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Thermal Conversion 
Stoichiometry 
Thermal Conversion 
Stoichiometry

HH33 CCOCaOCCHCCOCaOCCH33 

 


 


 

CCCHCCCH33 + CaCO+ CaCO33

OO

Calcium Acetate        AcetoneCalcium Acetate        Acetone

OO OO

HH33 CCHCCH22 COCaOCCHCOCaOCCH22 CHCH33 

 


 


 

CCHCCH22 CCHCCH22 CHCH33 + CaCO+ CaCO33

Calcium Propionate                 Diethyl KetoneCalcium Propionate                 Diethyl Ketone

OO OO OO

HH33 CCHCCH22 CHCH22 COCaOCCHCOCaOCCH22 CHCH22 CHCH33 

 


 


 

CCHCCH22 CHCH22 CCHCCH22 CHCH22 CHCH33 + CaCO+ CaCO33

Calcium Butyrate                               DipropCalcium Butyrate                               Dipropyl Ketoneyl Ketone

OO OO OO



Thermal Conversion KineticsThermal Conversion Kinetics
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Ketone Hydrogenation 
Stoichiometry 
Ketone Hydrogenation 
Stoichiometry

O OH
H3 CCCH3 + H2  H3 CCCH3

H
Acetone                Isopropanol

H3 CCCH2 CH3 + H2  H3 CCCH2 CH3
H

O OH

Methyl Ethyl Ketone       2-Butanol

H3 CCH2 CCH2 CH3 + H2  H3 CCH2 CCH2 CH3

O

H

OH

Diethyl Ketone                      3-Pentanol



Ketone HydrogenationKetone Hydrogenation

HH22

Liquid KetonesLiquid Ketones

Catalyst = 200 g/L Raney nickelCatalyst = 200 g/L Raney nickel
Temperature = 130Temperature = 130ooCC
Time = 35 min  (@ P = 15 atm)  Time = 35 min  (@ P = 15 atm)  
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Oligomerizaton ChemistryOligomerizaton Chemistry

OH
H3 CCCH3  H3 CHC=CH2 + H2 O

H

Isopropanol Propylene

H3 CHC=CH2 + H3 CHC=CH2  H3 CCH2 CH2 HC=CHCH3

Propylene Propylene Hexene

H3 CCH2 CH2 HC=CHCH3 + H2  H3 CCH2 CH2 CH2 CH2 CH3

Hexene Hexane

Dehydrate

Dimerize

Saturate



Mixed Alcohols to HydrocarbonsMixed Alcohols to Hydrocarbons

Mixed alcohols
from MixAlco process Hydrocarbon



Mixed Alcohols to HydrocarbonsMixed Alcohols to Hydrocarbons

Unreacted alcohol

Paraffins

Total

Aromatics



Mixed Alcohols to HydrocarbonsMixed Alcohols to Hydrocarbons

Components of jet fuel



Mixed Alcohols to HydrocarbonsMixed Alcohols to Hydrocarbons

Components of gasoline
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•• Energy efficientEnergy efficient
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•• Many productsMany products
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•• grassgrass
• agricultural residues
•• energy cropsenergy crops

•• animal manureanimal manure
•• sewage sludgesewage sludge
•• municipal solid wastemunicipal solid waste
•• algae algae ““bodiesbodies””

MixAlco FeedstocksMixAlco Feedstocks



Sugarcane BagasseSugarcane Bagasse

~100 ft



•• treestrees
•• grassgrass
•• agricultural residuesagricultural residues
• energy crops

•• animal manureanimal manure
•• sewage sludgesewage sludge
•• municipal solid wastemunicipal solid waste
•• algae algae ““bodiesbodies””

MixAlco FeedstocksMixAlco Feedstocks
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Current-Generation BiofuelsCurrent-Generation Biofuels

http://petroleum.berkeley.edu/papers/patzek/CRPS416-Patzek-Web.pdf



CornfieldCornfield

Bart and Phillip 



Corn Land Area Required to Supply 
100% of US Gasoline 
Corn Land Area Required to Supply 
100% of US Gasoline



Competition with FoodCompetition with Food
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SorghumSorghum

Source: William Rooney, Soil and Crop Sciences, Texas A&M University 

Grows in ~35 US states

Yield = 20–25 dry ton/(acre·yr)
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Energy Cane



Energy Cane
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MixAlco AdvantagesMixAlco Advantages

•• Can use wet feedstocksCan use wet feedstocks
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15.7 MJ heat

1000 kg water

Dewatering EnergeticsDewatering Energetics

Ethanol Distillation (5% to 99.9%)

3                         = 8.4                           = 28.5%  of the combustion heat
kg steam

L ethanol

MJ heat

kg ethanol

MixAlco: Carboxylate Salt Vapor-Compression Dewatering (5% to 100%)

Source: B.L. Maiorella, Ethanol, Comprehensive Biotechnology, Vol. 3, Pergamon Press (1985). 

×
95 kg water

5 kg acid
=

0.3 MJ

kg acid
= 1.7%  of the combustion heat 

Work = 5.5 kWh/thous gal = 1.45 kWh/m3 Assume heat to work is 33% efficient
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ChemistryChemistry

Carboxylate 
Salt

Carboxylic  
AcidKetone

Aldehyde
Formic Acid Formic Acid

Secondary 
Alcohol

H2

Primary 
Alcohol

Ester 
H2

Ether

Olefins

Paraffins Cyclics Aromatics

Hydrocarbons

= Fuel
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MixAlco Logistics (Example)MixAlco Logistics (Example)

Oil
Refinery Carboxylate Salts Pipeline

Ketones, Acids, or Alcohols Pipeline
Existing Oil Pipeline

MixAlco Plant

Satellite FermentorsBayou

Ocean
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Competes with oil at about 
$70/bbl without subsidies



Brief History of MixAlco ProcessBrief History of MixAlco Process

1991 1991 –– Laboratory research beganLaboratory research began
2000 2000 –– Pilot plant construction beganPilot plant construction began
2008 2008 –– Demonstration plant construction beginsDemonstration plant construction begins
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1991 1991 –– Laboratory research beganLaboratory research began
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Fermentor StructureFermentor Structure

105 ft

50 ft



Construction has begun!!Construction has begun!!
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Fermentor 
Interior 

Fermentor 
Interior



Completed Fermentor Completed Fermentor 



Giant Cattle RumenGiant Cattle Rumen



Dedication (November 2008)Dedication (November 2008)



Governor SpeakingGovernor Speaking



Holtzapple SpeakingHoltzapple Speaking



Naming the Demonstration PlantNaming the Demonstration Plant



Holtzapple Family with GovernorHoltzapple Family with Governor



Holtzapples with GovernorHoltzapples with Governor



OutlineOutline

••BackgroundBackground
••BiofuelsBiofuels
••Advanced EnginesAdvanced Engines



Sorghum Land AreaSorghum Land Area

30 mpg*

Conventional Car

93 gallons

* at 70 miles per hour



comp = exp = 82%

engine = 57 – 66%




Sorghum Land AreaSorghum Land Area

90 mpg*

StarRotor Engine

31 gallons

* at 70 miles per hour



Sorghum Land AreaSorghum Land Area

12 gallons

* at 70 miles per hour

235 mpg*

Loremo
with

StarRotor Engine



Sorghum Land AreaSorghum Land Area

8 gallons

* at 70 miles per hour

380 mpg*

Aptera
with

StarRotor Engine



ApteraAptera



ApteraAptera



Thank you for your
time and attention
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