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Diesel Power: Exhals

POLLUTANT ABATEMENT

Particulate Soot Particulate Filter
VOCs Oxidation Catalyst
CO Oxidation Catalys

NOX SCR, NSR
SO, NONE




Houston/Galveston Area

NOx Emission Sources**

50% Diesel Mostly Diesel

B Improved Fi el /
B Lean tion exhaust: \ Non-Road Mobile

Exhaust NO, —= N, difficult On-Road Mobile 90 tpd (21%)

152 tpd (35%) Point Source
146 tpd (34%)

Challenge: Reduce diesel
by Area Source

NO, emissions* with cost 46 tpd (10%)
effective & reliable technology

*EPA Target for Houston area: Total NOx: 434 tons NOx/day**
80% reduction in NOx emissions by 2018 **Source: TCEQ Website
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a special type of diesel that does not
ro pollutants when burnec

OT Ultra Low Sulfur Diesel (ULSD)
m It is NModlesel” or “renewable diesel”
It is NOT “gas-to-liquids” (GTL) diesel

M Instead

It IS a system that combines low sulfur diesel

(one of the above) with advanced engine and

aftertreatment technologies to produce an

exhaust with significantly lower NOx and PM
% emissions
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'm Die hicles are more fuel efficient than
jasoline vehicles (15-30%)

B Diesel vehicles have the highest “well-to-
whee'lée lency; I.e. efficiency of

o

converting energy content of energy of
petroleum In the ground into mechanical
energy of the vehicle

B Clean diesel is a way to meet the challenge of
reducing energy consumption in
_ transportation and CO, emissions
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California proposes rules limiting pollution
from nearly all diesel trucks

By Paul Rogers Mercury News

Posted: 12/10/2008 06:56:32 PM PST

The black soot that big-rig trucks belch from their chugging diesel engines may soon become a
~ thing of the past.

In one of the more far-reaching smog regulations that California has ever proposed, state air
regulators are considering a first-in-the-nation plan that would require nearly every privately
‘owned heavy diesel truck in the state to install a filter that would reduce emissions of soot
from their rigs by 85 percent.

The new regulation would affect 1 million truckers, half of them registered out of state who
regularly drive on California freeways. If approved by the California Air Resources Board at its
meeting Friday, it would take effect in 2010, with nearly all trucks required to be retrofitted by
2014,

The filters — stainless steel and three feet long — attach to exhaust pipes and cost $15,000 to
$20,000 per truck. Those who back the proposal point to massive public health benefits.
Opponents call the costs prohibitive, especially during a time of economic crisis.

Supporters note that medical research over the past decade shows that microscopic diesel
particles are among the most harmful type of air pollution. Not only can they lodge deep in the
lungs during regular exposure, but also they can penetrate the walls of blood vessels, causing
inflammation that can lead to strokes and heart attacks.

"This is a very big deal. Particulate matter from diesel engines is one of the most toxic
substances that we have found," said Dr. Thomas Dailey, chief of pulmonary medicine at
Kaiser Permanente Medical Center in Santa Clara.

Diesel soot contains more than 40 cancer-causing chemicals, including formaldehyde and
benzene. The elderly and children are considered most at risk, particularly in urban areas.




Diesel
Oxidation
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Abatement:

Status:  Implemented

Diesel NOXx
Particulate Reduction
Filter Reactor

Soot NO
& &
Solids N[O

Under
Development

In Progress

lessage.: The “clean diesel” vehicle is a sophisticated unit.
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Diesel Emission DYI\!AMOMETER TEST FACILITIES
5 : Engine dynamometer

' TeCh_nC’lOgy : Chassis dynamometer

Testing : Emission analysis

Third-Party : UH Research :
Technologies i Technologies Findings Best Solutions

"""" Collaboration

Diesel Emission : LABORATORIES

& Engine Catalyst synthesis & characterization
Technol : Bench-scale & TAP reactors
ecnnology : Engine diagnostics & controls

R&D : Modeling & Simulation




remental
ugls: Biodiesel, Fuel additives

= E>&?t gas recirculation (EGR)
Change”

Selective catalytic reduction with urea/NH; (SCR)
Lean NOx traps (LNT)

SCR/LNT systems

Continuously regenerating soot filters

Integrated NOx & soot systems

Integrated biodiesel solutions (e.g. BD + EGR)

18




il

1% e E%‘







"

‘;ﬂl .

%0 Reduction

g/mile(Baseline)

g/mile(SCR)

NOx flow (g/sec)

64.90

8.13

2.86

60

—_—

— Nox-baseline
— Nox-SCR
— Speed

- 50

- 40

- 30

- 20

- 10

(@)
N
O .
o

400

Time (sec)

800

(ydw) psads



;o

EGR

° Reduce_d‘rticulates & HCs ® Reduced NOx

An attractive retrofit solution!
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_EGR + Biodiesel
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nt Pulsiﬂr

Time (sec)

| LEAN NOx TRAP Clean
Exhaust

TWC LESIEUER[ES
| NT N Max?m?ze NOX conversion |
B Maximize reductant conversion
B Minimize fuel penalty
B Minimize deactivation
B Achieve robust control




HC, H,, CO

Nok<
BN Pt H,0

Al,O,

N NOx Storage
B Trap NO/NO, as surface species, nitrite, nitrate
B Need high trapping efficiency (> 95%)
M Catalytic adsorbent: Pt/Rh/Alkali Earth Oxide/Support

B Reduce NOx on Pt/Rh during rich purge

B Need high conversion of NOx to N, (> 90%)
B Ensure high conversion of reductant via oxidation




S_—
‘esiﬁ: A multi-objective task

B Maximize NOx & reductant conversion
Imize N, selectivity (eliminate NH,)
B Minimize fuel penalty

B Maintain high catalyst activity
B Achieve robust on-board control

m Hybrid LNT-SCR a

H,, NO NH,, NO

pplication:

N,, H,O

B Promote interstage ammonia production
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B %ate spatio-temporal behavior of LNT
with H, w%ductant

B Understand differences in steady-state &

cyclic product distributions; e.g., N, vs. NH,
B Formulate phenomenological picture of LNT

B Develop quantitative reactor model to guide
optimization




Modeling & Simulation

Kinetic Modeling

eSteac ate lean NO, e Micro-kinetics

redu e Global kinetics

*NOy storage & | Reactor Modeling
reduction (cycling

e |sothermal / short
monoliths

Transient kinetics

studies (TAP) . e Non-isothermal
Integral monoliths

Bench-scale Reactor Activities
Studies

e Elucidation of data

V/eh__icle Dynamometer e Bifurcation analysis
festing

Low-dimensional mogdels
for optimization & control
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34.7 3.18 3.26 107

Monolith dimensions: 0.8 cm diameter, 2 cm length
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NH; Selectivity
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NOx Storage (mol NOx/g wash coat) \!
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NITRITE PATHWAY
BaO + 050, €-> BaO, ~ -

~

Pt ~
BaO, + NO <= BaONO, ~

P
BaONO, + NO <= Ba(NO,),

~

Pt
Ba(NO,), + O, <&-> Ba(NO;),

SHORT TERM
STORAGE

NITRATE PATHWAY
NO, + BaO €-> BaONO,

BaONO, <= BaO, + NO

BaO-NO, + NO, €= Ba(NO,),

BaO + 2NO + 150, <= Ba(NO;),

BaO + 2NO, + 0.50, €-> Ba(NO,),

BaO + 3NO, <> Ba(NO,), + NO







5% O,
500 ppm NO
11=60 s

Rich:

500 ppm NO
5.1% H,
1.5% O,
t=10s

GHSV = 60K hr’
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N2O, N2, & NH3 (ppm)
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Conversion & Selectivity (%)

100

80

60

40

20

500 ppm NO
5% O2 (storage)
1.5% O, (pulse)
5.1% H, (pulse)
Sn,=0.6

—o— NOx
—-— N2

—2=NH3
——N20

————o0—@ @ < ® ®
I I I |

150 250 350 450 550

Average Monolith Temperature (°C)



e different reductant

In n policies
N Determ'ﬁe Imal policy

B Hig conversion He
B Low fuel consumption Flow

B EXxperiment: Rate

B Fix reductant (propylene)
Injected per cycle

B Vary duty cycle of pulse

B Fix total cycle time




Catalyst: 0.5%0 Pt/12% BaO/y-Al,O4
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Pulse Time
Cycle Time

Duty Cycle Rich =

B4 Catalyst

long cycle time limit”
XNOx = W, XrSS + (1'Wr) XISS
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B4 Catalyst
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m H iin lroutes to N,

m Reaction'b'bveen stored NOx and reductants

(H, and"l?,)
B Role of NH; as intermediate reductant

B Reduction effectiveness of H, vs. NH,




B Reactiontb@een stored NOx and reductants

(H; a 3)
B Role of NH; as intermediate reductant

B Reduction effectiveness of H, vs. NH,
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obes uptake & .
position |

of pulse intensity, spacing time (t,)

® NOandH %probe

® NO & sed alternately
B Variation of pulse intensities,
delay time (tq) , Spacing time (t,)

B Feed composition™
M Excess NO
B Excess H,

__*Basis: NO + H, > % N, + H,0
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Catalyst Composition

Pt Mass of Estimated
Sample i BaO Dispersion Catalyst Exposed
(wt. %) (wt. %) (%) (mgQ) Pt Sites

D3 2.36 12.7 3 110 2.4 x 107

21 (Pt/BaO)
B2M 028  16.6 33 +76 (BaO) 2.8 x 10"
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B Sustained N, production = Continuous spillover of NO & O from Pt to Ba
= NO, formation



()]
L | 1

D

H, (H, pulse)

NO input

Molecules/Pulse (x10'16)

—— N, (NO pulse)
—— N, (H, pulse)

150 200 250 300 350 400 450 500 550 600
Pulse No.




6_- H, input \-
&~ 07
X 44 H, (H, pulse) _
& N, (NO pulse) H, consumed =
S 3- —+— N, (H, pulse) 2 x N, produced
E 2_- NO input
o
=

O o S A R EN S B v B S A S S S B B

0 50 100 150 200 250 300 350 400 450 500 550 600
Pulse No.



| \\
S

2NO €> N, +

O [cules/pulse (x1 07

o
o

el e
o N
L

Y
|

2 1
04 -
0.2-

—=— N, (NO pulse)
——N, (H, pulse)

—— NO (NO pulse)
——H, (H, pulse)

—— Total N stored (calculated)

NO input

N, + (2x-1)H,0

0.0 4

100 200 300

400 500
Pulse No.

600

700

800

900



G L

2H-Pt + O-Pt &« H,O + 3Pt.... H,reacts off O-Pt

NO-Pt - 7"%N, + O-Pt.... Occurs on reduced Pt
2NO-Pt < N,O + O-Pt.... Occurs on O-poisoned Pt

N-Pt + 3H-Pt < NH; + 4 Pt... Occurs in rich conditions

Ba(NO,), + 4Pt « BaO, + 20-Pt + 2NO (- Pt)...
Occurs in vicinity of Pt/Ba interface




B Reaction between stored NOx and reductants

(H; a 3)
B Role of NH; as intermediate reductant

B Reduction effectiveness of H, vs. NH,




N as reductant: Pihl et al., SAE, 2006; Cumaranatunge et al., J. Catal., 24642007
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original monolith into progressively

%Ier sections
O P icjg:periments to generate spatio-
tem I centration profiles
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ser’Ve as reductants during NSR

H, IS @ superior reductant under steady-state conditions
low 380 °C during cycling

B Formatior N, can occur through four different
reaction routes; two primary routes

W Direct: H, + NOx > N,
B Indirect: H, + NOx - NH; and NH; + NOx 2 N,

B Regeneration initially feed rate limited by H,

B Rate limiting step switches from a feed rate limited
state to one in which the supply of NOx from the
~ storage phase to Pt is limiting







Model vs. Experiment: Storage
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Conditions: T = 275 °C

Lean: 500 ppm NO, 5%0,

Rich: 1500 ppm H,, balance Ar (100 s)
Pt, BaO: 2.70 wt.%, 14.6 wt.%

O€layton, R.D., M.P. Harold, and V. Balakotaiah, “NOx Storage and Reduction with H, on Pt/BaO/Al,O5; Monolith:

)
§?‘ _;o-TemporaI Resolution of Product Distribution,” Appl. Catal. B. Environmental, 84, 616-630 (2008).
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?% gtia, D., M.P. Harold, and V. Balakotaiah, “A Global Kinetic Model for NOx Storage and Reduction
el

Pt/BaO/Al,O; Monolithic Catalysts, Catalysis Today, under review (2009).




Global Kinetic Model for NOx
Storage & Reduction: Regeneration

4. 8H, + Ba(NO,),(f) > 5H,0+BaO(f)+2NH,
Rus = K4 X4, weCoao (1) Fzano,), (T)

5. 8H, + Ba(NO,),(s) » 5H,0 + BaO(s) + 2NH,
Ris = Ks X i, wecCaa0 (8)zano,), (5)

6. %Nm +Ba(N03)2(f)—>5HZO+BaO(f)+%N2

7. % NH; +Ba(NO;), (s) — 5H,0 + BaO(s) +§N2
NOX
8. H,0+AlLO, < H,0-AlO, H, —— NH;
NOXx
¥ OF
?;*NHB + AlLO, < NH, — AlLO, NOz
B, T e 7 e 2




Outlet Concentration (ppm)

Model vs. Experiment: Regeneration

1600F

1400}

—
N
o
o

O %@D%D

O + H2 experiment
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= m| H20 experiment

NH3 experiment
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Conditions:

Lean: 500 ppm NO,

95%0,

Rich: 1500 ppm H,,

balance Ar (100 s)

Pt, BaO: 2.70 wt.%,
14.6 wt.%

T=275°C




Varied Length Experiments

Approach:

Divide original monolith into progressively
smaller sections

Replicate experiments to generate spatio-
temporal concentration profiles
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Effluent NH; Transient
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Effluent N, Transient

(@) 350f (b) 300F
2cm
__ 300} ~ 250}
:
o 250} = 200}
C [
° o
S S 150}
I= [
S 150} 8
(&)
S S 100}
O 100t ON
(V]
Z | < 50}
50} ¥
:_» . 25, Y ""“~"?'Z§v‘117:;'} ‘.1.4 : ~"; e 'v' Ot . . . h -
60 100 20 60 70 80 90 100 110 120

Time (sec) Time (sec)

Experiment Model




H2 Concentration (ppm)

Traveling H, Front

. Monolith Length (cm) -

Experiment

. 115 s
% 110 s
~— 1000}
C
°
‘§ 105 s
% 90 s
5 500 gos \ 0%
@)
e 65 s 75s
70s ‘\
0_7 S . : :
0 05 1 1.5

Axial Position (cm)

Model



—
QO
~

NH3 Concentration (ppm)

Traveling NH; Front

78's 80s 96s

N
o
o

160}
140}
120}
100}

0 0.5 1

Monolith Length (cm)

Experiment

1.5 2

(b) 200¢

NH3 Concentration (ppm)

150}

100}

S0}

0 0.5 1 1.5 2

Axial Position (cm)

Model



_—
Gro lesel-powered vehicles requires cost-effective
&t an NOx reduction

B NOX storage and reduction: Complexity is both its
nd challenge

B Focus on INg mechanistic understanding through
bench-s and TAP experiments

B On track towards predictive LNT reactor model with
microkinetics

B Next steps
B Catalysis:
M Develop improved LNT catalysts
M Elucidate chemistry/kinetics at Pt/Ba interface

B Systems integration:
M Link model with engine controls
B Combine LNT with SCR
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