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Outline

• Definitions: CHP and Efficiency

• Thermodynamics Review

• Energy integration theory

• CHP models
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• CHP = Combined Heat and Power (= energy utility system 
for the plant site)

• Steam Turbines are Heat Engines that operate on the 
Rankine cycle.  They convert  DP into Shaftwork; a 
generator then converts Shaftwork into Elec power

• Thermodynamic Efficiency is defined as

• For Generation, 1 useful output = Power only. Machine eff
= ~20%, System Eff = ~35%

• For Cogeneration, 2 useful outputs = Power + Process 
Heat, Machine eff = ~20%, but System Eff ~75-80%

Useful Energy Output

Energy Input

DEFINITIONS: CHP & EFFICIENCY
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This is CHP, but not Cogeneration

BOILERS
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PROCESS
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KWSTEAM 
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BOILER EFF  ~ 80%

POWER GEN EFF < 25%
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This is both CHP and “Co-Generation”

BOILERS

PROCESS

FUEL

KW
STEAM 

TURBINE

LP STEAM

OVERALL EFF ~ 75%

LAT HT OF EXHAUST STM IS USED IN THE PROCESS
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Alternative Cogen configurations

Extraction Turbine Induction Turbine
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Variations – hybrid Cogen and Condensing

Extraction turbine               Induction turbine
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Simple Rankine Cycle flowsheet

Schematic shown is for cogeneration mode
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Difficult to match Heat:Power ratio of process

4 Basic Configs – which do you think is most efficient?

Most 

efficient
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The ultimate Combined-cycle Cogen scheme

PROCESS

AIR GAS
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GAS TURBINE

HRSG

KW

HP  STEAM

KW

LP  STEAM

OVERALL EFF ~ 85%

ELEC EXPORT
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Different types of ST Efficiency

• Machine Efficiency = 
W/Qin = (H1-H2)/H1

• Isentropic Efficiency     
= W/[M.(H1–H2)max]     
= (H1-H2)/(H1-H’2)

• System efficiency

M, P2,  T2, H2

W

PROCESS

Equipt

M,  P1, T1, H1

M - mm

 

1

2

M.H

Hmm).-(M 3413.kW 2.
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


H’2 = exhaust vapor enthalpy IF the 

expansion were isentropic (which it 

is not, and can never be)
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A Bit of History …

US Power plants stopped cogenerating ~1960
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THERMODYNAMICS REVIEW

Rankine cycle on the P-V diagram

P-V  Diagram for Water
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Power generation step (#3) on Mollier Chart

• Adiabatic 
expansion 
(from 600 psig, 
700oF to 50 psig)

• Isentropic 
efficiency

Mollier Chart (H-S) for Steam
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Effect of P2/P1 on Machine Efficiency (W/Qin)

Near-optimal 

Inlet Conditions 

for industrial 

cogen systems

Theoretical Machine Efficiency tops out at ~13% for BPST and 24% for

CST before moisture content in turbine reaches dangerous levels.

Power-to-Heat Ratio vs Steam Pressure Ratio
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Effect of P2/P1 on System Efficiency

System Efficiency peaks when exhaust steam is saturated, 

drops rapidly as P2/P1 is falls, slowly as P2/P1 rises

System Efficiency vs P2/P1 ratio

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P2/P1

S
y
s
te

m
 e

n
e

rg
y
 E

ff

Exhaust

stm is dryExhaust

stm is wet

Condensation starts

at P2 = 53 psig



Kumana & Associates © 2018 17

Next: What is the Optimum Exhaust Pressure?

• P2 should be at a high enough pressure that it 
can be used for process heating

• If there are multiple steam levels in the process, 
an extraction type turbine should be considered, 
with both exhaust pressures above ambient.

• The amounts should match the process steam 
requirements ( “thermal match”)

• For higher P2 or W/Qin  increase P1 and T1

PINCH ANALYIS provides the ANSWER
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OPTIMUM TURBINE INTEGRATION

Qcold

Qhot

T
e

m
p

Heat Load

Qhot & Qcold are the

energy targets

Pinch = minimum DT 

reqd for ht tr “Pinch 

Analysis”

It is possible to consolidate ALL the heating and cooling duties in the process 

into two Composite Curves that show the enthalpy change requirements 

between the entire temperature range over which the process operates
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The Pinch Principle - 1

If we allow XP heat transfer, Qh and Qc both increase by XP

QCmin+ XP

Source

QHmin+ XP

Sink

H

T

XP

Not economic 

because  DT< DTmin

?
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The Pinch Principle - 2

To achieve the Energy 

Targets, DO NOT

• use Steam below Pinch

• use CW above Pinch

• transfer heat from 

process streams above 

Pinch to process 

streams below Pinch

T

Cooling

Water

Steam

Process Heat

Transfer
Pinch 

Temp
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Steam Turbine Integration options

100% conversion of Q  W
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Summary of Energy Balances

= Machine 

efficiency
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Grand Composite Curve - GCC
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Correct Integration of Steam Turbine

• GCC shows us 
exactly how much 
HP and LP steam 
is needed, and the 
right P/T levels

• ST must always
exhaust ABOVE 
the Process Pinch

• When designed 
this way, payback 
is very good, 
typically 3-4 yrs
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Fuel
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HPS
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Process 
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Grand Composite

Curve

CW

Fuel = HPS + LPS + W + Qloss
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Total Site Source-Sink curves

Net process

cooling demand
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Optimize Configuration

LP

MP

HPHP

MP

LP Sink

Fuel
+

+

LP

MP

HPHP

MP

LP

Source

Fuel

+

LLP LLP

IP

+

+

Power generation

increased

Reduction in fuel

consumption

EXISTING

OPTIMIZED



Kumana & Associates © 2018 27

CHP SIMULATION MODELS
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Excellent Tool for Analysis

Model should include all Key System Features:
 Multiple steam levels

 Multiple boilers (with eff. curves)

 Process WHBs

 Steam and Gas turbines (incl HRSG)

 PRVs, Desuperheaters

 Condensate recovery (by steam pr level)

 Boiler blowdown flash & HX

 Deaerators (could be > 1)

 “Dump condenser”, if needed

 Economizer for BFW preheat

 BFW integration with process

 Process power demand
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CHP Optimization Guidelines

• Set BPST exhaust pressures based on
process steam headers (from GCC)

• Set steam flows through BPSTs based on 
process heating duties at each Pr level

• Condensing Turbines invariably a BAD idea

• Minimize flows through PRVs

• Use highest feasible DeAerator pressure(s)

• Maximize condensate recovery

• Preheat cold BFW makeup water by using it as 
a cooling medium in the process
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On-line Utilities Optimization

Hydrogen             Fuel                Steam               Water           Electricity
Utility Systems

External Utilities 
Contracts

Emissions 
Regulations

ProcessIndustrial
Site

Real-Time Optimizer finds the best way to operate all utilities subject to 
contractual, environmental and operational constraints

Optimum
Utilities
Operations
Report

Measurements

Optimum
Set Points

Key 
Performance 
Indicators
Monitoring
and 
Accounting
Reports

From VisualMesa® brochure,  Courtesy of Soteica LLC, Houston, Tx
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Expected Benefits and Costs

• Typical savings = 3-5% of baseline (operator-

optimized) energy costs

• Typical installed cost = $500-900K

• Typical Payback << 1 yr 

• Proven in dozens of Oil refineries, Chemical 

plants, Pulp/Paper mills (can be deemed a 

Best Practice)
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Case Study – Operate closer to Optimum
Optimización Visual Mesa 

Ahorros Anuales Predichos - Siguiendo las Sugerencias de Optimización

TODOS LOS DATOS RECOLECTADOS, HASTA EL PRESENTE
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IN CONCLUSION

• Use GCC to choose Stm Levels and Loads

• Use BPSTs in cogen mode when possible

• Condensing steam turbines are Invariably Bad*

• Use TSSS to identify optimum CHP structure

• Use CHP models to optimize parameters

• Always optimize process demand before trying to 
design/optimize the CHP system

• Ability to export excess power to the Grid at a fair 
price is critical to optimizing energy efficiency at 
National scale, and minimizing global GHG emissions

with a few rare exceptions
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Optimum Process Integration

It’s like a jig-

saw puzzle, 

but well worth 

the effort


