

OPTIMAL INTEGRATION OF STEAM TURBINES IN INDUSTRIAL PROCESS PLANTS

J D Kumana, MS ChE Kumana & Associates, Houston, Tx *jkumana@aol.com* (281) 437-5906

> AIChE-STS, network meeting Houston, 2 Feb 2018

Outline

- Definitions: CHP and Efficiency
- Thermodynamics Review
- Energy integration theory
- CHP models

DEFINITIONS: CHP & EFFICIENCY

- CHP = Combined Heat and Power (= energy utility system for the plant site)
- Steam Turbines are <u>Heat Engines</u> that operate on the Rankine cycle. They convert △P into Shaftwork; a generator then converts Shaftwork into Elec power
- Thermodynamic Efficiency is defined as

Useful Energy Output Energy Input

- For Generation, 1 useful output = Power only. Machine eff = $\sim 20\%$, System Eff = $\sim 35\%$
- For Cogeneration, 2 useful outputs = Power + Process Heat, Machine eff = ~20%, but System Eff ~75-80%

This is CHP, but not Cogeneration

LATENT HEAT OF ST EXHAUST IS WASTED

Kumana & Associates © 2018

This is both CHP and "Co-Generation"

LAT HT OF EXHAUST STM IS <u>USED</u> IN THE PROCESS

OVERALL EFF ~ 75%

Alternative Cogen configurations

Extraction Turbine

Induction Turbine

Variations – hybrid Cogen and Condensing

Extraction turbine

Induction turbine

Simple Rankine Cycle flowsheet

Schematic shown is for cogeneration mode

Difficult to match Heat: Power ratio of process

4 Basic Configs – which do you think is most efficient?

The ultimate Combined-cycle Cogen scheme

Different types of ST Efficiency

- Machine Efficiency = W/Qin = (H1-H2)/H1
- Isentropic Efficiency
 = W/[M.(H1-H2)max]
 = (H1-H2)/(H1-H2)
- System efficiency $\eta = \frac{3413.kW + (M - m).\lambda_2 + m.H_2}{M.H_1}$

 H'_2 = exhaust vapor enthalpy IF the expansion were isentropic (which it is <u>not</u>, and can never be)

A Bit of History ...

US Power plants stopped cogenerating ~1960

THERMODYNAMICS REVIEW

Rankine cycle on the P-V diagram

Power generation step (#3) on Mollier Chart

 Adiabatic expansion (from 600 psig, 700°F to 50 psig)

 Isentropic efficiency

Effect of P2/P1 on Machine Efficiency (W/Qin)

Theoretical Machine Efficiency tops out at ~13% for BPST and 24% for CST before moisture content in turbine reaches dangerous levels.

Effect of P₂/P₁ on System Efficiency

System Efficiency peaks when exhaust steam is saturated, drops rapidly as P2/P1 is falls, slowly as P2/P1 rises

Next: What is the Optimum Exhaust Pressure?

- P2 should be at a high enough pressure that it can be used for process heating
- If there are multiple steam levels in the process, an extraction type turbine should be considered, with both exhaust pressures above ambient.
- The amounts should match the process steam requirements (→ "thermal match")
- For higher P₂ or W/Q_{in} \rightarrow increase P₁ and T₁

PINCH ANALYIS provides the ANSWER

OPTIMUM TURBINE INTEGRATION

It is possible to consolidate ALL the heating and cooling duties in the process into two **<u>Composite Curves</u>** that show the enthalpy change requirements between the entire temperature range over which the process operates

The Pinch Principle - 1

If we allow XP heat transfer, Qh and Qc both increase by XP

The Pinch Principle - 2

To achieve the Energy Targets, **DO NOT**

- use Steam below Pinch
- use CW above Pinch
- transfer heat from process streams above Pinch to process streams below Pinch

Steam Turbine Integration options

No improvement in system η

100% conversion of $Q \rightarrow W$

Summary of Energy Balances

	I	ntegrate	Integrate	Integrate
Parameter	A	cross PP	Above PP	Below PP
Process steam from fired boiler		Α	Α	Α
Turbine steam from fired boiler		Q	Q	0
Turbine steam from WHB below Pinch		0	0	Q
Turbine exhaust vapor		Q-W	Q-W	Q-W
Net HP steam required		A + Q	A+W	А
Net Total Cooling Duty	В	+(Q-W)	В	B - W
System energy efficiency		~ 20%	~ 95%	free power
= Machine				
	efficie			

Grand Composite Curve - GCC

Correct Integration of Steam Turbine

- GCC shows us exactly how much HP and LP steam is needed, and the right P/T levels
- ST must <u>always</u> exhaust ABOVE the Process Pinch
- When designed this way, payback is very good, typically 3-4 yrs

 $Fuel = HPS + LPS + W + Q_{loss}$

Total Site Source-Sink curves

Enthalpy, MMBtu/h

Optimize Configuration

CHP SIMULATION MODELS

Excellent Tool for Analysis

Model should include all Key System Features:

- Multiple steam levels
- Multiple boilers (with eff. curves)
- Process WHBs
- Steam and Gas turbines (incl HRSG)
- PRVs, Desuperheaters
- Condensate recovery (by steam pr level)
- Boiler blowdown flash & HX
- Deaerators (could be > 1)
- "Dump condenser", if needed
- Economizer for BFW preheat
- BFW integration with process
- Process power demand

CHP Optimization Guidelines

- Set BPST exhaust pressures based on process steam headers (from GCC)
- Set steam flows through BPSTs based on process heating duties at each Pr level
- Condensing Turbines invariably a BAD idea
- Minimize flows through PRVs
- Use highest feasible DeAerator pressure(s)
- Maximize condensate recovery
- Preheat cold BFW makeup water by using it as a cooling medium in the process

On-line Utilities Optimization

30

Expected Benefits and Costs

- Typical savings = 3-5% of baseline (operatoroptimized) energy costs
- Typical installed cost = \$500-900K
- Typical Payback << 1 yr
- Proven in dozens of Oil refineries, Chemical plants, Pulp/Paper mills (can be deemed a <u>Best Practice</u>)

Case Study – Operate closer to Optimum

Y axis = Deviation from Optimum = Remaining Savings Opportunity

IN CONCLUSION

- Use GCC to choose Stm Levels and Loads
- Use BPSTs in cogen mode when possible
- Condensing steam turbines are <u>Invariably Bad*</u>
- Use TSSS to identify optimum CHP structure
- Use CHP models to optimize parameters
- Always optimize process demand before trying to design/optimize the CHP system
- Ability to export excess power to the Grid at a fair price is critical to optimizing energy efficiency at National scale, and <u>minimizing global GHG emissions</u>

with a few rare exceptions

Optimum Process Integration

It's like a jigsaw puzzle, but well worth the effort

