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DEFINITIONS: CHP & EFFICIENCY

* CHP = Combined Heat and Power (= energy utility system
for the plant site)

 Steam Turbines are Heat Engines that operate on the
Rankine cycle. They convert AP into Shaftwork; a
generator then converts Shaftwork into Elec power

*  Thermodynamic Efficiency is defined as

Useful Energy Output
Energy Input

* For Generation, 1 useful output = Power only. Machine eff
= ~20%, System Eff = ~35%

* For Cogeneration, 2 useful outputs = Power + Process
Heat, Machine eff = ~20%, but System Eff ~75-80%
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This iIs CHP, but not Cogeneration

LATENT HEAT OF ST EXHAUST IS WASTED
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This is both CHP and “Co-Generation”

LAT HT OF EXHAUST STM IS USED IN THE PROCESS
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OVERALL EFF ~ 75%
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Alternative Cogen configurations

HPF steam header HP steam header
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Variations — hybrid Cogen and Condensing

HP steam header HP steam header
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Simple Rankine Cycle flowsheet

HP STEAM LP STEAM

—
“UEL BOILERS

'

w EI
e Gl | ©
TURBINE KW PROCESS

DA drum v
Condensate
BFW makeup loss to VIV

Schematic shown is for cogeneration mode
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Difficult to match Heat:Power ratio of process

Mode 1a: Thermal Match, power deficit

o
HP steam

Boiler Frocess

Boiler Frocess

Mode Z2a; Power match, steam deficit

HP steam_h

Most

Buaoiler . .
efficient

FProcess

Maode 2b: Power match, steam surplus

HP steam_h

Buoiler FProcess

K3 (exact match)

__________ 4

kWY (exact match)

4 Basic Configs — which do you think is most efficient?
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The ultimate Combined-cycle Cogen scheme

EXHAUST
TO ATMOS
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PROCESS
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Different types of ST Efficiency

M,,P1, T1, H1

W/Qin = (H1-H2)/H1

(I_ * |Isentropic Efficiency
L = W/[M.(H1—H2)max]

M P2 T2 1o = (H1-H2)/(H1-H2)
T vl m * System efficiency
~ 3413 kW +(M -m).A, + m.H,
PROCESS = M.H,

v ) 4
Equipt @

* Machine Efficiency =

H’2 = exhaust vapor enthalpy IF the
expansion were isentropic (which it
IS not, and can never be)
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A Bit of History ...
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US Power plants stopped cogenerating ~1960
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THERMODYNAMICS REVIEW

Rankine cycle on the P-V diagram

P-V Diagram for Water
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Power generation step (#3) on Mollier Chart

Mollier Chart (H-S) for Steam
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Effect of P2/P1 on Machine Efficiency (W/Qin)

Near-optimal
Inlet Conditions
for industrial
cogen systems

Inlet steam

flow, Ib/h 100,000
psig 600
psia 614.7
sat T 489
actual T 700
superheat 211
H, Btu/lb 1350

S, Btullb-F 1.5844

Power:Heat ratio

0.25
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0.15

0.10

0.05

0.00

Power-to-Heat Ratio vs Steam Pressure Ratio

Condensing
\ Turbine limit
\J\D\ -~
0.0 0.1 0.2 0.3 0.5 0.6 0.7 0.8

P2/P1

Theoretical Machine Efficiency tops out at ~13% for BPST and 24% for
CST before moisture content in turbine reaches dangerous levels.
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Effect of P2/P1 on System Efficiency

System Efficiency vs P2/P1 ratio
100%

5 A —
3 60%
Q Condensation starts
GE’ — —— atP2=53psig
[0
] 40% \
n r—— Exhaust
xhaus i
stm is dry
20% Q‘L — stm is wet
0% ] ] ] ] ] ] ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P2/P1

System Efficiency peaks when exhaust steam is saturated,
drops rapidly as P2/P1 is falls, slowly as P2/P1 rises
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Next: What is the Optimum Exhaust Pressure?

* P2 should be at a high enough pressure that it
can be used for process heating

* If there are multiple steam levels in the process,
an extraction type turbine should be considered,
with both exhaust pressures above ambient.

* The amounts should match the process steam
requirements (> “thermal match”)

* For higher P2 or W/Qin = Increase P1 and T1

PINCH ANALYIS provides the ANSWER
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OPTIMUM TURBINE INTEGRATION

Temp

|

Qhot

.=E

Pinch = minimum AT
reqd for ht tr

“Pinch

Analysis’

Qhot & Qcold are the
energy targets

Heat Load

It is possible to consolidate ALL the heating and cooling duties in the process
Into two Composite Curves that show the enthalpy change requirements
between the entire temperature range over which the process operates
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The Pinch Principle - 1

Ta

Not economic
because AT< ATmin

" H

If we allow XP heat transfer, Qh and Qc both increase by XP
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The Pinch Principle - 2

To achieve the Energy
A Targets, DO NOT

Cooling * use Steam below Pinch
Water

Pinch Process Heat * use CW above Pinch
Temp Transfer

v * transfer heat from
process streams above
Pinch to process
streams below Pinch

Steam
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Steam Turbine Integration options

A+W
A+Q A
T A T 4 I ~N\
{A Q\ A-(Q-W) Q
| Heat >W
4 Q-W Engllne
Heat -
__________ Engine j;>w S
Q
Q-W Heat
Engine W

B+(Q-W) B0 Q-W

No improvement in system n 100% conversion of Q 2> W
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Summary of Energy Balances

Integrate | Integrate | Integrate

Parameter Across PP | Above PP | Below PP
Process steam from fired boiler A A A
Turbine steam from fired boiler ) Q 0
Turline steam from WHE below Pinch 0 0 ]
Turbine exhaust vapor Q0 —W Q—W Q—-W
et HP steam required A+Q AW A
et Total Cooling Dty B +(Q-W) B B-W
Svstem energy efficiency Zjﬂ':u ~03% | free power

= Machine

efficiency
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Grand Composite Curve - GCC

HP STEAM

T s @

LP STEAM /
vy
I
COOLINGWATER(
V4

REFRIGERATION

Used for
utilities
selection
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Correct Integration of Steam Turbine

* GCC shows us y 7 s
exactly how much / TH
HP and LP steam
is needed, and the S ow | Fuel

right P/T levels

e ST must always
exhaust ABOVE
the Process Pinch

HPS

Grand Composite
Curve

Process
Pinch

* When designed
this way, payback CW
IS very good,
typically 3-4 yrs

Fuel = HPS + LPS + W + Q¢
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Total Site Source-Sink curves

4 ) AT

Net process  Req.Q
cooling demand )
= available heat

l‘.
L

Source ettt I Net process
Sink heating

demand

Enthalpy, MMBtu/h
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Optimize Configuration

EXISTING

/ I
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A 4
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Excellent Tool for Analysis

Model should include all Key System Features:
= Multiple steam levels
= Multiple boilers (with eff. curves)
* Process WHBs
= Steam and Gas turbines (incl HRSG)
= PRVs, Desuperheaters
» Condensate recovery (by steam pr level)
= Boiler blowdown flash & HX
= Deaerators (could be > 1)
= “Dump condenser’, if needed
= Economizer for BFW preheat
BFW integration with process
= Process power demand
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CHP Optimization Guidelines

*» Set BPST exhaust pressures based on %}>
process steam headers (from GCC)

* Set steam flows through BPSTs based on {}>
' process heating duties at each Pr level ;

* Minimize flows through PRVs
* Use highest feasible DeAerator pressure(s)
* Maximize condensate recovery

* Preheat cold BFW makeup water by using it as
a cooling medium in the process
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On-line Utilities Optimization

Real-Time Optimizer finds the best way to operate all utilities subject to

contractual, environmental and operational constraints

g)pt:pm.um Optimum
feah et Points iliti
Emissions Measurements Utilities

Regulations ﬂ Operations
Report

s
=+ ‘:ﬁ
i
Key
\ Performance
— Indicators

. ] Monitorin

External Utilities Industrial and :

\Contracts ) \Site E== £ : Accounting
Reports
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Expected Benefits and Costs

* Typical savings = 3-5% of baseline (operator-
optimized) energy costs

* Typical installed cost = $500-900K
* Typical Payback << 1 yr

* Proven in dozens of Oll refineries, Chemical
plants, Pulp/Paper mills (can be deemed a
Best Practice)
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Case Study — Operate closer to Optimum

Suigs/Tod ey Qs )

1/
b2
A
%
Bl
Bl
Bl §:
62
kY
2
Ji

Y axis = Deviation from Optimum = Remaining Savings Opportunity
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IN CONCLUSION

* Use GCC to choose Stm Levels and Loads

* Use BPSTs in cogen mode when possible

* Condensing steam turbines are Invariably Bad*
* Use TSSS to identify optimum CHP structure

* Use CHP models to optimize parameters

* Always optimize process demand before trying to
design/optimize the CHP system

* Ability to export excess power to the Grid at a fair
price is critical to optimizing energy efficiency at
National scale, and minimizing global GHG emissions

X with a few rare exceptions 33
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Optimum Process Integration

It's like a jig-
saw puzzle,
but well worth
the effort
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