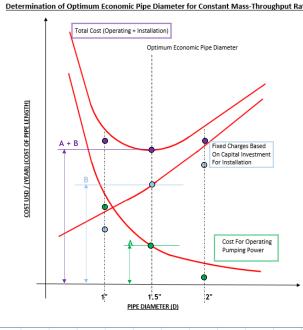

Beverage Fermentation Class Case Study Workshop ESG Processes at Anheuser Busch, Inc.

Brewery Fermentation Transfer of Beer

Energy Calculations with Fluid Hydraulic Pump Head



PHA FERMENIER	PUMP	MUTUR							
				Nominal Size	SMALL 1"	LARGE 2"	MIDPOINT 1.5"	Inch	
Pipe Fluid Flow Velocity	L	Run # 1	Run # 2	Run # 3	Run # 1	Run # 2	Run # 3	<u>Units</u>	
Constant Flow Rate (Q)	(GIVEN)			Q	30	30	30	GРM	
Schedule 5 S Inside Pipe Diameter (d) =	(GIVEN)			d	Actual 1.1850	Inside Dime	ension 1.7700	Inch	
Pipe Installed Cost/Foot =	(GIVEN)				\$10.00	\$20.00	\$12.50	\$ / Ft	
Pipe Equivalent Length =	(GIVEN)				1,000	1,000	1,000	Ft	
Pipe Installed Cost (est.)	(GIVEN)	(Material 8	t Labor Cos	sts)	\$10,000	\$20,000	\$12,500	\$	
Fluid Velocity (v) =	<u>0.4</u>	d^2	v	(FIND) V				<u>Ft</u> Sec	
Fluid Density (ro) =	(GIVEN)		(Krausen E	Beer) ro	62.6	62.6	62.6	<u>Lbs</u> Cu Ft	
Fluid Viscosity (cP) =	(GIVEN)		(Krausen E	Beer) cP	1.1	1.1	1.1	cР	
Reynolds Number (Nre) =	123.9 * ı	ro * v * d cP	= Nre	(FIND) Nre				N/A	
Fluid Specific Gravity (SG)	= (GIVEN	٧)	(Krausen E	Beer)	1.10	1.10	1.10	N/A	
Friction Factor (f) =	1.8 LOG	<u>Nre</u> 7	^(-2) =	(FIND) f				N/A	
Head Loss (Ft/1,000') =	0.0311 *	f * 1,000' *	'Q^2 /d^5	(FIND) hL				Ft / 1,000)'
Pump Efficiency (ep) =	(GIVEN)			ер	0.70	0.70	0.70	N/A	
Pump Brake Hp (BHp) =	Q * Ft *	SG / 3,960	/ ep =	(FIND) BHp				ВНр	
Motor Efficiency (em) =	(GIVEN)			em	0.65	0.65	0.65	N/A	
Pump Motor Horsepower	(MHp) =	BHp / er	n =	(FIND) MHp				МНр	
Pump Horsepower (Hp) =	· (PUMP /	MOTOR HP	TABLE)	(FIND) Hp				Нр	
Pump Motor Energy (W)	= MHp * :	745.7 Watts	/ Hp =	(FIND) W				Watts	
Pump Motor Installed Co	st = (PUM	P MOTOR I	HP TABLE)	(FIND) \$Pins				\$ Pins	(
Pump Motor Operating C	ost =	Watts * \$0.0	07 / W =	(FIND) \$POpCs				\$POpCs	(
System Instal & Oper. Cost	=Pipe Cost	+ Motor Cost	+ Op Cost =	(SOLUTION) \$SC	1" Dia.Min.	2" Dia.Max.	1.5" Dia.	\$SC	(
Operating Carbon Footpo (Not a Pump CFP Life Cy			1,000 Hr =	(SOLUTION) CFP				CFP	(
Most Sustainable (OPTIM	UM) =	· . .		RECOMMENDATION)				(

Comment: Based on the Optimum Economic Pipe Diameter Graph the economic choice would be a

Comment: 1.5" pipe cost is low, but with a future motor replacement cost is the same as a 2" pipe

Comment: 2" pipe has the lowest Carbon Footprint compared to the 1" and the 1.5" Pipes

Comment: Select the 2" pipe with the lowest Carbon Footprint and the lowest maintenance costs

Comment: For CIP of the 2" pipe selection a VFD CIP pump will be used to get velocities between 5

STANDARD PUMP MOTOR HORSEPOWER & COST (estimated) TABLE

0.25 Hp	\$100	3 Hp	\$1,200	25 Hp	\$10,000	100 Hp	\$40,000
0.5 Hp	\$200	5 Hp	\$2,000	30 Hp	\$12,000	125 Hp	\$50,000
0.75 Hp	\$300	7.5 Hp	\$3,000	40 Hp	\$16,000	150 Hp	\$60,000
1 Hp	\$400	10 Hp	\$4,000	50 Hp	\$20,000	200 Hp	\$80,000
1.5 Hp	\$600	15 Hp	\$6,000	60 Hp	\$24,000	250 Hp	\$100,000
2 Hp	\$800	20 Hp	\$8,000	75 Hp	\$30,000	300 Hp	\$120,000

