

Beverage Fermentation Class Case Study Workshop ESG Processes at Anheuser Busch, Inc. **Chemical & Biomolecular Engineering Department** Case Western Reserve University Joseph Yurko, PE, AIChE Fellow May 27, 2025

Brewery Fermentation Transfer of Beer young PROFESSIO

Calculate the Energy to Pump a Fluid in a Pipe and the Carbon Footprint of the Pumping Energy after Optimizing the Pipe Size

Carbon Footprint of Pumping Energy

Brewery Fermentation Transfer of Beer

Energy Calculations with Fluid Hydraulic Pump Head

Class needs to evaluate the optimum pipe size:

- Exercise # 1 for Class
- Beechwood Aging Process
- Krausening Transfer Line
- Motivation: Schedule Alpha Beer Transfer with Krausen Beer

Brewery Fermentation Transfer of Beer

Energy Calculations with Fluid Hydraulic Pump Head **Class needs to evaluate the optimum pipe size:**

- Exercise # 1 for Class
- Beechwood Aging Process
- Krausen Beer Transfer Line (Red Line)
- Criteria
 - •Chip Beer from Alpha Fermenter
 - 2500 BBL, 200 GPM, 6 Hrs.
 - Krausen Beer from Settling Tank
 - 375 BBL, 30 GPM, 6 Hrs.
 - Yeast Injection to Krausen Wort
 - 11 BBL, 1 GPM, 6 Hrs.

Brewery Fermentation Transfer of Beer

Energy Calculations with Fluid Hydr

How to calculate the Optimum Pipe Size (Min. – Max.):

- Trial & Error Technique
- Bisection Method
- Based on Flow Rate (gpm)
- First Try Minimum Dia. (1")
- Secondly Try Maximum Dia. (2")
- Select Value in between (1.5")

Brewery Fermentation Transfer of Beer

Calculate the Energy to Pump a Fluid in a Pipe and the Carbon Footprint of the Pumping Energy after Optimizing the Pipe Size

Energy Calculations with Fluid Hydraulic Pump Head

Needed to calculate the optimum pump motor size:

- Pipe inside diameter (d)
- Pipe Equivalent Length (L)
- Installed Linear Length of pipe cost per foot (\$/ft)
- Fluid (BKR) flow rate (gpm)
- Fluid (BKR) density (ro) and viscosity (cP)
- Pump efficiency (ep), estimated
- Pump motor cost (\$) and motor efficiency (em)
- Pump operating electrical power conversion to a Carbon Footprint (not the pump Life Cycle Analysis, LCA is beyond the scope of this workshop)

Pump & Motor

Brewery Fermentation Transfer of Beer

Class needs to evaluate the Optimum Pipe & Pump size:

Exercise # 1 for Class to generate the Optimum Pipe size **BISECTION METHOD SOLUTION** SMALL LARGE MIDPOINT Using Fluid Flow Equations to the right, Calculate Nominal Size 1" 2" 1.5" Inch Three Velocities for Line sizes 1 Pipe Fluid Flow Velocity **Bun #1 Bun #2 Bun #3** Bun #1 Bun #2 Run # 3 Units 2. Three Reynolds Numbers for Lines Constant Flow Rate (Q) = (GIVEN) Q 30 30 30 GPM 3. Three Friction Factors for Lines Schedule 5 S Inside Actual Inside Dimension Three Head Losses for Lines Pipe Diameter (d) = (GIVEN) d 1.1850 2.2450 1,7700 Inch \$12.50 \$7Ft Pipe Installed Cost/Foot = (GIVEN) \$10.00 \$20.00 Pipe Equivalent Length = (GIVEN) 1.000 1.000 1.000 Ft Pipe Installed Cost (est.) = (GIVEN) (Material Cost) \$10,000 \$20,000 \$12,500 S 0.408 * Q = V Fluid Velocity (v) = (FIND) V Et d^2 Sec Fluid Density (ro) = (GIVEN) (Krausen Beer) ro 62.6 62.6 62.6 Lbs Cu Ft Fluid Viscosity (cP) = (GIVEN) (Krausen Beer) cP 11 11 11 сΡ 123.9 ro'v'd = Nre Reynolds Number (Nre) = (FIND) Nre N/A cР Fluid Specific Gravity (SG) = (GIVEN) (Krausen Beer) 1.10 1.10 1.10 N/A (-2) = f (FIND) f Friction Factor (f) = 1.8LOG Nre N/A

Head Loss (Ft/1,000')=

7

0.0311" f" 1.000" "Q"2 /d"5 | (FIND) hL

AICHE young PROFESSIONALS

Ft / 1,000"

Brewery Fermentation Transfer of Beer

Class needs to evaluate the Optimum Pipe & Pump size:

• Exercise # 2 for Class to generate the Pump Horsepower

- Using Fluid Flow Equations below, Calculate
 - 1. Three Pump Break Horsepower values for the Lines
 - 2. Three Pump Motor Horsepower values for Lines
 - 3. Three Pump Horsepower values for Lines
 - 4. Three Pump Motor Energies for the Lines

Pump Efficiency (ep)=	(GIVEN)		ер	0.70	0.70	0.70	N/A
Pump Brake Hp (BHp) =	Q'Ft'S	G/3,960/ep=	(FIND)				BHp
Motor Efficiency (em) =	(GIVEN)		em	0.65	0.65	0.65	N/A
Pump Motor Horsepower	r (MHp) =	BHp/em=	(FIND)				MHp
Pump Horsepower (Hp) =	(PUMP M	IOTOR HP TABLE)	(FIND)				Hp
Pump Motor Energy (W) =	= MHp	• 745.7 Watts/Hp =	(FIND)				Watts

Brewery Fermentation Transfer of Beer

Class needs to evaluate the Optimum Pipe & Pump Size:

• Exercise # 3 for Class to generate the Pump Motor Operating Carbon Footprint

- Using Fluid Flow Equations below, Select & Calculate:
 - 1. Select Three Pump Motor Costs from Table below
 - 2. Calculate Three Pump Motor Operating Costs
 - 3. Calculate the System Installation Costs for Three Pumps
 - 4. Calculate the Three Pump Motor Operating Carbon Footprint Values
 - 5. Select the BEST Pipe & Pumping Size

			(0) 100	HOTOP						_		
PumpN	lotor Ins	talled Cost	= (PUMP	MUTUH	HP TABL	(FINL	IJ					\$
PumpN	/lotor Op	perating Cos	;t =	Watts \$).07 ł W =	(FINE))					\$
								1" Dia.Min.	2" Dia	.Max.	1.5" Dia.	
System	Instal & C)per. Cost =	Pipe Cost	• Motor Co:	st + Op Cost =	(SOLUTI	ON)					\$
* Operati	ing Carb	on Footprin	t (CFP) =	Lbs CO2	/ 1,000 Hr =	(SOLUTI	ON)					CFF
(Not a F	^p ump CF	P Life Cycl	e Analysis)								
Most St	ustainab	ole (OPTIMU	M) =			(SOLUTI	ON)					
· · - · -		· - · - ·								+		
Standard) PUMP	Motor Ho	RSEPO¥	ER & COS)T (estimate	<u>d) table</u>						
0.25	Hp	\$100	3	Hp	\$1,200	25	Hp	\$10,1	000	100	Hp	\$40,000
0.5	Нр	\$200	5	Hp	\$2,000	30	Hp	\$12,	000	125	Hp	\$50,000
0.75	Нр	\$300	7.5	Hp	\$3,000	40	Hp	\$16,1	000	150	Hp	\$60,000
1	Hp	\$400	10	Hp	\$4,000	50	Hp	\$20,	000	200	Hp	\$80,000
1.5	Hp	\$600	15	Hp	\$6,000	60	Hp	\$24,	000	250	Hp	\$100,000
2	Ho	\$800	20	Но	¢8.000	75	He	\$30	000	300	Ho	\$120,000

	Sustaina	able Engir	neering. Prine	ciples and P	ractices	. Dr. Baks	hi. Camb	ridge Univ	ersity Pr	ess. 2019
	Chapter	9, Invento	ory Analysis	_					-	
	Table 9.	2, Typica	l Life Cycle Ir	nventory Da	ta from Ir	nput-Outp	ut Mode	s		
	Referen	ce: 22110								
	USEEIO: A	New and T								
	model, Journal of Cleaner Froduction , 158: 308-318, 2017									
	Flow	<u>Units</u>	Reference	Electricity						
*	CO2	kg/\$	221100	6.27E+00						
	HIGH	LOW	MIDPOINT							
	Bun # 1	<u>Bun # 2</u>	<u> Run # 3</u>							
	INPUT	INPUT	INPUT							
	OUTPUT	<u>OUTPUT</u>	<u>OUTPUT</u>							
	18,248	863	2,682	Watts						
	1	1	1	Hours						
	18,248	863	2,682	Wh						
	18.2	0.9	2.7	kWh						
	The Bedfo	ord Industria	l Cost of Electric	oity is :	\$0.07	kWh				
	Determine	the Life Cy	cle of CO2 emis	sions for this s	ystem bas	ed on an Inp	out-Outpu	t model		
	IO Model L	.ife Cycle Cl	02 Emissions =							
*	Bup #1 =	6.27E+00	ka	\$0.07	18.2	kWb =	80	ka CO2 =	17.6	l bs CO2
			*	kh/h						
			•	600						
*	Run #2 =	6.27E+00	kg	<u>\$0.07</u>	0.9	kWh =	0.4	kg CO2=	0.8	Lbs CO2
			\$	kWh						
*	Run #3 =	6.27E+00	kg	<u>\$0.07</u>	2.7	kWh =	1.2	kg CO2=	2.6	LP2 CO5
			\$	kWh						

Brewery Fermentation Transfer of Beer

