THE FUTURE OF NUCLEAR POWER

ANDREW OHRABLO

0

Ò

BIO

- Andrew Ohrablo
 - Bachelor of Science Nuclear Engineering University of Wisconsin at Madison
 - Senior Thesis Design of Liquid Metal Fast Breeder Reactor
 - Perry Nuclear Power Plant, Perry, OH 2014-Present
 - Maintenance Engineering Supervisor Current Position
 - Maintenance Electrical Engineer
 - Work Week Manager
 - Cooper Nuclear Station, Brownville, NE 1999-2014
 - Shift Technical Engineer
 - Senior Reactor Operator NRC License Number 44337
 - United States Navy Nuclear Electrician USS Enterprise 1987-1993

BIO

- Kristine Gehring-Ohrablo
 - Masters of Science Radiation Health Physics Oregon State University
 - Masters of Science Bacteriology University of Wisconsin at Madison
 - Bachelors of Science Microbiology Ohio State University
 - Perry Nuclear Power Plant, Perry, OH 2014-present
 - Primary Chemist
 - Cooper Nuclear Station, Brownville, NE 2000-2014
 - Staff Chemist
 - Chemistry Technician

REACTOR SIZES

• Three generally recognized reactor sizes:

- Large Commercial Reactors:
 - >300MWe
 - Largest operating is Grand Gulf ~1400MWe
 - Currently two 1100MWe reactors under construction in Waynesboro Georgia
- Small Modular Reactors
 - >5Mwe and <300MWe
 - Does not depend on reactor design, pressurized water, boiling water or advanced design
 - NuScale, Terrapower
- Micro-reactors
 - <5MWe
 - Commonly referred to as a nuclear battery

OTHER REACTOR DESIGN

- Liquid Metal Fast Breeder Reactors
- High Temperature Gas Cooled
- Canadian Heavy Water (CANDU)
- Light Water Graphite Moderated (RBMK, Chernobyl)
- Molten Salt Thorium

PLANT LOCATIONS IN THE UNITED STATES

U.S. Operating Commercial Nuclear Power Reactors

PRESSURIZED WATER REACTORS

Ο

PRESSURIZED WATER REACTOR

- Reactor Pressure can be around 2000 psig
- Reactivity (power) controlled by boron concentration
- Primary Coolant never exits containment structure lower dose

BOILING WATER REACTOR

Ο

BOILING WATER REACTORS

- Normal operating pressure around 1000 psig
- Reactivity (power) controlled by control rod position or reactor coolant flow
- Cooling water is also heat transfer medium

TERMS

- Critical status of nuclear reactor where the number of neutrons in one generation is equal to the number of neutrons in the previous generation – power is remaining constant
- Reactivity Relative departure from critical for a nuclear reactor
- Sub-Critical status of nuclear rector where the number of neutrons in one generation is less then the number of neutrons in the previous generation – power is going down
- Super-Critical status of nuclear rector where the number of neutrons in one generation is more then the number of neutrons in the previous generation – power is going up

TERMS (CONTINUED)

- Barns measure of cross section of a nucleus for a specific reaction higher barns means a nucleus is more likely to react
- Absorption nuclear reaction where an incident particle is absorbed into the nucleus
- Capture Nuclear reaction where an incident particle remains in the nucleus following absorption
- Fission nuclear reaction where an incident particle results in the mother nuclear splitting into two or more nuclei
- Beta Decay where an excited nucleus releases energy in the form of a positron or electron and a nucleon is changed from a proton or neutron to bring the nucleus to a lower energy state⁽
- Alpha decay where an excited nucleus releases an alpha particle to bring the nucleus to a lower energy state
- Alpha Particle Essentially a helium atom without the electrons. Two protons and two Neutrons

NEUTRON LIFE CYCLE

0

COEFFICIENTS OF POWER

- A coefficient of power is a change in the physical properties of the reactor and how it affects the neutron life cycle
- A positive coefficient of power will result in a rise in neutron population from one generation to the next. A power increase.
- Coefficients of power
 - Temperature
 - Pressure
 - Voids
 - Doppler
 - Poisons

BENEFIT OF LIGHT WATER REACTORS

- Negative temperature coefficient
 - As temperature rises, power drops
- Negative Void Coefficient
 - As water is turned to steam and voids are created, power drops
- Doppler Coefficient
 - As the fuel heats up it vibrates more and non-fuel components absorb more neutrons
- Light Water Reactors are inherently safe

WHY CONCERN FOR ACCIDENTS

- Unlike fossil fuels, when the reactor is shut down, fission product decay continues to generate heat.
- During normal operation, fission product heat (decay heat) is approximately seven percent of power.
- One minute following shutdown, decay heat is approximately three percent power.
- Ten minutes following shutdown, decay heat is approximately one percent of power.

DECAY HEAT

0

WHY CONCERN FOR ACCIDENT

- Assume that 1/100th of power of decay heat at 6 hours
- Reactor power at 100% can be 1300 MW
- •Therefore 1300MW X 0.0001 = 130 kW at 6 hrs
- •Average house uses 1kw an hour

EMERGENCY SYSTEMS BOILING WATER REACTORS

- High Pressure Injection sources Reactor Core Isolation Cooling, High Pressure Coolant Injection – Used for small leaks that do not depressurize the reactor (at least two systems per reactor) – steam or electric pumps
- Low Pressure Injection Residual Heat Removal, Core Spray Used for large leaks that depressurize reactor (four to six systems per reactor) electric pumps
- Diesel Generators supply electricity to emergency pumps when offsite power is lost (two to three per reactor)

ADDITIONAL WATER SOURCES

- Control Rod Drive Pumps two per reactor
- Standby Liquid Control Pumps two per reactor
- Feedwater Pumps two per reactor high pressure injection
- Condensate Booster Pumps three per reactor medium pressure injection
- Condensate Pumps three per reactor low pressure injection
- Fire Protection diesel driven or electric driven low pressure injection
- River/Lake Water designed cross tie to allow for injection to reactor low pressure injection

DOSE CONCERNS

• Four potential effects on cells due to radiation:

- Radiation passes through cell without damage occurring
- Cell repairs itself and no further damage occurs
- Cell dies This occurs millions of times a day even without radiation
- Cell does not repair itself and replicates in the damaged form
 - Body identifies and eliminates
 - Potential to cause cancer
 - Potential to pass to next generation

DOSE LIMITS* (10CFR20)

- Radiation Worker
 - Whole Body 5 Rem/yr
 - Any Organ 50 Rem/yr
 - Lens of Eye 15 Rem/yr
- Member of Public
 - 100 mRem/yr
 - 1,000 mrem = 1 Rem
- Data shows that high doses of radiation may cause cancers. But there is no data to establish a firm link between cancer and doses below about 10,000 mRem (10,000 mRem – 100 times the NRC limit). *
 - Average US resident receives annual exposure of about 620 mrem/yr

IMMEDIATE EFFECTS OF RADIATION**

- 0-10 Rem No observable effect
- 10-100 Rem Slight to moderate decrease in white blood cell counts no observed long term effects
- 100-200 Rem Significant blood cell count reduction, nausea, vomiting, rarely fatal
- 200-500 Rem Nausea, vomiting, hair loss, severe blood damage, fatalities

Compare to occupational limit of 5 Rem/year

CONCLUSION

- Two major designs utilized in the US Boiling Water and Pressurized Water Reactors
- Definitions Associated with Nuclear Reactors
- Coefficients of Power
- Benefits of Light Water Reactors
- Injection Systems Available at a Boiling Water Reactor
- Effects of radiation on cells

CITATIONS

- * NRC regulations 10CFR20 & https://www.nrc.gov/reading-rm/doccollections/fact-sheets/bio-effects-radiation.html
- **BC Campus, College Physics Biological effects of Ionizing Radiation https://opentextbc.ca/physicstestbook2/chapter/biological-effects-ofionizing-radiation/

QUESTIONS?

 \square

Ó

 \bigcirc

0

0

 \bigcirc