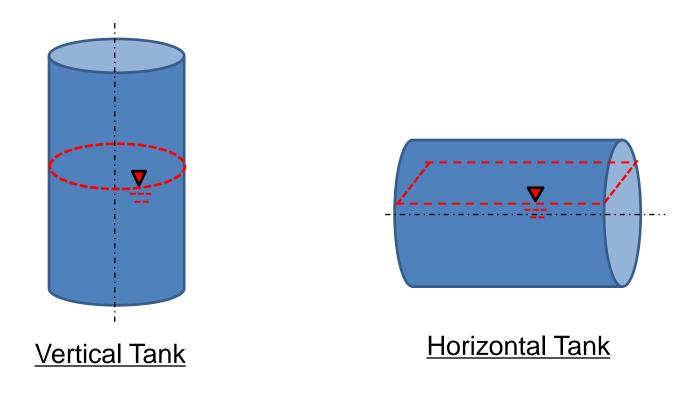


Pi (π) Day with the American Institute of Chemical Engineers

Joseph Yurko

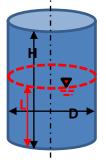

March 14, 2021

03.14.2021

Using Pi (TT) to calculate the volumes of tanks that are either vertical or horizontal.

Beverage Production Facility: Where Pi is Applied

How Pi (1) is used in our Tank Volume Calculations: Find the tank volume:


- 1. Enter the tank diameter
- 2. Generate a liquid surface area
- 3. The tank diameter will tell you the floor area needed
- 4. Enter the tank height
- 5. Generate the tank volume
- 6. The tank height will tell you the ceiling height needed

Calculate the volume in a vertical tank knowing:

- 1. The tank height (H)
- 2. The tank diameter (D)
- 3. The partial liquid Level (L)

Vertical Tank Elevation

Beverage Production Facility: Where Pi is Applied

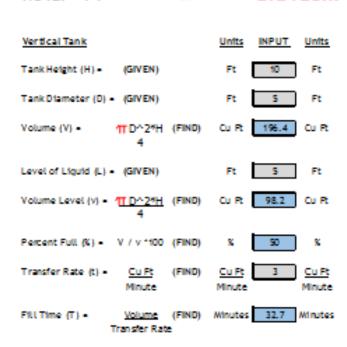
How Pi (**T**) is used in our Tank Volume Calculations

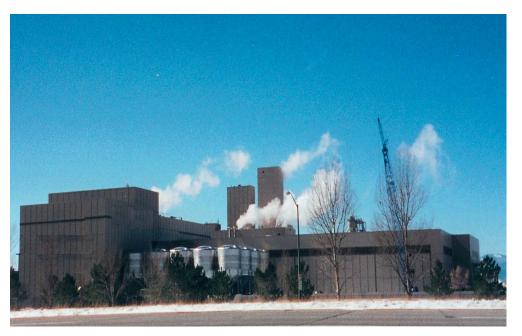
3.1416...

Calculate the volume in a Vertical tank knowing:

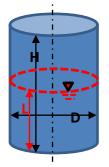
1. The tank height (H)

Pi


NOTE:


- 2. The tank diameter (D)
- 3. The partial liquid Level (L)

=


Liquid Surface Area: As = $\pi x R^2 = \pi x D^2 / 4$

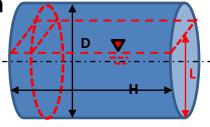
=

Vertical Tank Elevation

Beverage Production Facility: Where Pi is Applied

How Pi (1) is used in our Tank Volume Calculations

Given the tank volume needed:


- 1. Enter the tank diameter
- 2. Enter the tank height
- The tank diameter and height will tell you the floor area needed
- 4. The tank diameter will tell you the ceiling height needed

Calculate the volume in a horizontal tank knowing:

- 1. The tank height (H)
- 2. The tank diameter (D)
- 3. The liquid Level (L)

Horizontal Tank Elevation

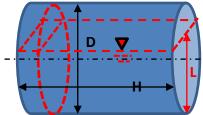
Beverage Production Facility: Where Pi is Applied

How Pi (1) is used in our Tank Volume Calculations

NOTE: Pi = 1 = 3.1416...

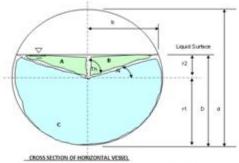
Calculate the volume in a Horizontal tank knowing:

- 1. The tank height (H)
- 2. The tank diameter (D)
- 3. The partial liquid Level (L)


Determine the volume of a horizontal vessel given the diameter of the vessel and the liquid level inside the vessel

Solution Stars	Run#1 Run#2 Units
Enter Inside Tank Diameter:	5 2.5 • d
Calculate Tank Radius:	2.5 1.25 •r
Calculate r2:	0.5 0.25 • r2
Feet down from Tank Top to Liquid Surface -	2 1 Ft
Depth of Liquid from surface (D) -	3 1.5 Ft
Area - A -	0.61 0.15 Sq. Ft.
Area - B -	0.61 0.15 Sq. Ft.
COSTh -	0.20 0.20
Th -	78.46 78.46 degrees
Al -	11.54 11.54 degrees
Area - C •	11.08 2.77 Sq. Ft.
Total Area (A + B + C) =	12.30 3.08 Sq. Ft.
Length (H) -	10.00 10.00 Ft.
Liquid Volume (Cu R) -	123.01 30.75 Cu Ft.
Liquid Volume (Gal) -	920.22 230.05 Gal
Transfer Rate (t) = <u>Cu Pt</u> (FIND) <u>Ou Pt</u> Minute Minute	3 3 <u>Cu Pt</u> Minute
Fill Time (T) • <u>Volume</u> (FIND) Minutes Transfer Rate	41.0 10.3 Minutes

Horizontal Tank Elevation

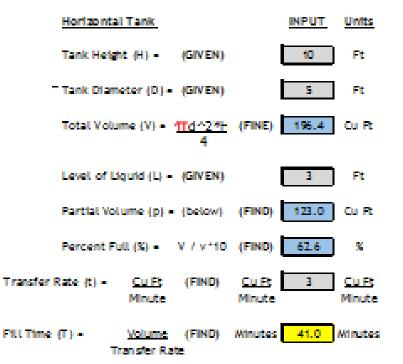

 $\label{eq:constant we set the transformation of the Liquid Dettermine in rabic feet of the Hol boreal Vessel:$ The volume in rabic feet of the Hol boreal Vessel:If the volume in rabic feet of the volume in rabic feet of

AREA A = AREA = 0.5 + ((D-r) + 0)

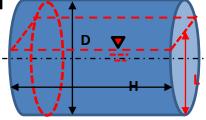
Total CrossSectorial Area + A + B + C

d*2 = 4 * (Tota Cross Sectional Area) / pi

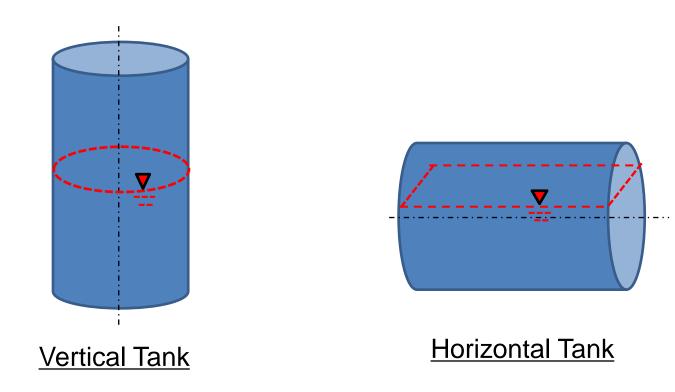
Multiply the total cross sectional area by the length of the vessel



Beverage Production Facility: Where Pi is Applied


How Pi (TT) is used in our Tank Volume Calculations

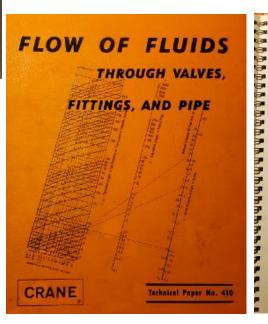
NOTE: $Pi = \Pi = 3.1416...$



Horizontal Tank Elevation

Using Pi (T) to calculate the volumes of tanks that are either vertical or horizontal.

Beverage Production Facility: Where Pi is Applied



<u>Reference:</u> Crane Technical Paper # 410, pg. 4-17

Application of Hydraulic Sodius to Flow Problems - continued

Example 4.26 ... For Paratis Alle

Joseph Yurko, P.E. Background:

Process Consultant with JAY of Northeast Ohio, LLC

- Xellia Pharmaceuticals USA, LLC (Novo Nordisk S/A), Cleveland, Ohio
- Kraft-Heinz Company, Frozen Foods Division, Massilon, Ohio
- Ben Venue Laboratories, Inc. (Boehringer-Ingelheim GmbH), Cleveland, Ohio
- Morrison Knudsen Corporation, Cleveland, Ohio

Licensed Professional Engineer

Emeritus member and Fellow of AIChE

Member of ACS, NSPE, and ISPE

Cleveland State University, Fenn College of Engineering

- Bachelor of Chemical Engineering
- Bachelor of Engineering Science
 - Distinction in Bioengineering