

Pi (**π**) Day with the American Institute of Chemical Engineers

By: Joseph Yurko

March 14, 2021

03.14.2021

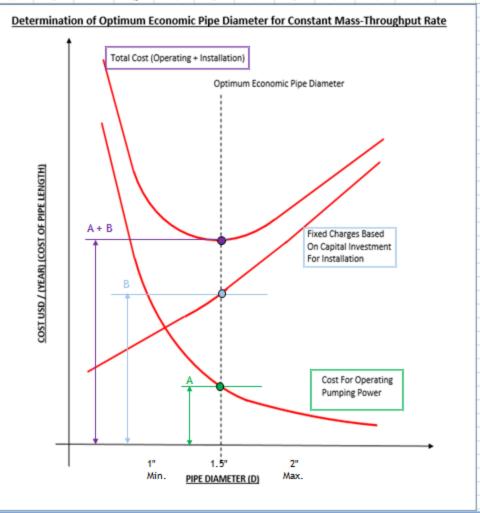
Using Pi (TT) to calculate the Energy to Pump a Fluid in a Pipe, and the Carbon Footprint of the Pumping Energy comparing different pipe sizes.

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (17) is used in our Energy Calculations with Fluid Hydraulic Pump Head

Needed to calculate the optimum pump size:

- •The pipe inside diameter (d)
- •The pipe length (L)
- •The installed pipe cost per foot (\$/ft)
- •The fluid and flow rate (gpm)
- •The fluid density (ro) and viscosity (cP)
- •The pump cost (\$) and efficiency (ep)
- •The pump motor cost (\$) and efficiency (em)
- •The sustainable engineering Life Cycle cost of electricity per pound of Carbon Dioxide


Pharmaceutical Production Facility: Where Pi is Applied

How Pi (TT) is used in our Energy Calculations with Fluid Hydraulic Pump Head

NOTE: Pi = 11 = 3.1416...

```
How to calculate the Optimum
Pipe Size (Min. – Max.):
```

Trial & Error Technique
Bisection Method
Based on Flow Rate (gpm)
First Try Minimum Dia. (1")
Secondly Try Maximum Dia. (2")
Select Value in between (1.5")

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (11) is used in our Energy Calculations with Fluid Hydraulic Pump Head

Pipe Fluid Flow Velocity	<i>(</i>	Run # 1	Run # 2	Run # 3	Run # 1	Run # 2	Run #3	Units
Row Rate (Q) -	(GIVEN)	30	30	30	0.0668	0.0668	0.0668	Cu Pt Sec
Inside								Dec.
Pipe Diameter (d) -	(GIVEN)	1	2	1.5	0.0833	0.1667	0.1250	Ft
Pipe Installed Cost/Foot	(GIVEN)	\$15.00	\$30.00	\$22.50)			\$ / Ft
Pipe Equivalent Length -	(GIVEN)				1,000	1,000	1,000	Ft
Pipe Cost (estimated) •	(GIVEN)				\$15,000	\$30,000	\$22,500	\$
Velocity (v) -	<u>Q*4</u> π D^2			(FIND)	12.2	3.1	5.4	<u>Ft</u> Sec
Density (ro) -	(GIVEN)				62.4	62.4	62.4	Lbs Cu R
Viscosity (cP) -	(GIVEN)				1	1	1	æ
Reynolds Number(Nre)-	Lbs Cu R	<u>CuRt * 4</u> π D^2	<u>D</u> Viscosity	(FIND)	9.46E+04	5.91E403	1.87E+04	ΝĮΑ
Specific Gravity (SG)	(GIVEN)				1.00E+00	1.00E+00	1.00E+00	ΝĮΑ
Priction Factor (f) -	1.8 LOG	Nre 7	^(-2)	(FIND)	0.1055	0.2101	0.1533	ΝĮΑ
Pressure Drop (Ft/1,000))- 0.03	11 f 1,000	Q^2 /d^5	(FIND)	2952.4	183.8	565.1	Ft/1,000
Pump Efficiency (ep)-	(GIVEN)				0.70	0.70	0.70	N/A
Pump Brake Horsepower	(BHp) =	Q*F#SG /	3,960/ep+	(FIND)	32.0	2.0	6.1	внр
Motor Efficiency (em)	(GIVEN)				0.65	0.65	0.65	N/A
Pump Motor Horsepower	(MHp) =	BHp / en -		(FIND)	49.2	3.1	9.4	мнр
Pump Motor Horsepower	(MHp) =	BHp / en -		(TABLE)	50	5	10	MHp
Pump Motor Horsepower	(MHp) =	MHp * 745.	7 Watts/Hp	(FIND)	36,657	2,282	7,016	Watts
Pump Motor Cost (\$ estin	nated) -	\$ -		(TABLE)	\$20,000	\$2,000	\$4,000	\$

STANDARD PUMP MOTOR HORSEPOWER & COST (estimated) TABLE

0.25 Hp	\$100	3 Hp	\$1,200	25 Hp	\$10,000	100 Hp	\$40,000
0.5 Hp	\$200	5 Hp	\$2,000	30 Hp	\$12,000	125 Hp	\$50,000
0.75 Hp	\$300	7.5 Hp	\$3,000	40 Hp	\$16,000	150 Hp	\$60,000
1 Hp	\$400	10 Hp	\$4,000	50 Hp	\$20,000	200 Hp	\$80,000
1.5 Hp	\$600	15 Hp	\$6,000	60 Hp	\$24,000	250 Hp	\$100,000
2 Hp	\$800	20 Hp	\$8,000	75 Hp	\$30,000	300 Hp	\$120,000

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (**1**) is used in our Energy Calculations to generate a Carbon Footprint

Sustainable Engineering, Principles and Practices, Dr. Bakshi, Cambridge University Press, 2019

Chapter 9, Inventory Analysis

Table 9.2, Typical Life Cycle Inventory Data from Input-Output Models

Reference: Y. Yang, W.W. Ingwersen, T.R. Hawkins, M. Srocka, and D.E. Meyer; USEEIO: A New and Transparent United States Environmentally Extended Input-Output model, Journal of Cleaner Production, 158: 308-318, 2017

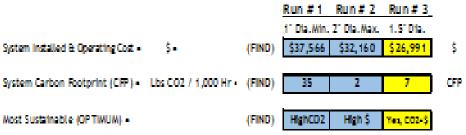
Flow	Units	Reference	Electricity
COZ	kg / \$	221100	6.27E+00
HIGH Run # 1 INPUT OUTPUT	LOW Run # 2 INPUT OUTPUT	MI DPOINT Run # 3 INPUT OUTPUT	
36,657	2,282	7,016	Watts
1	1	1	Hours
36,657	2,282	7,016	Wh
36.7	2.3	7.0	kWh

The Bedford Industrial Cost of Electricity is

\$0.07 kWh

Determine the Life Cycle of CO2 emissions for this system based on an input-Output model

IO Model Life Cycle CO2 Emissions -

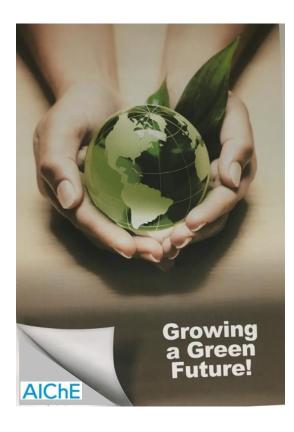

Run #1 = 6.27E+00	kg	<u>\$0.07</u>	36.7	kWh -	16.1	kg CO2 -	35.4	Lbs CO Z
	\$	kWh						
Run # 2 • 6.27E+00	kg	<u>\$0.07</u>	2.3	kWh -	1.0	kg CO2 -	2.2	Lbs CO Z
	\$	kWh						
Run #3 = 6.27E+00	kg	<u>\$0.07</u>	7.0	kWh -	3.1	kg CO2 -	6.8	Lbs CO Z
	\$	kWh						

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (TT) is used in our Energy Calculations to generate a Carbon Footprint

Using Pi (17) we found our Energy Calculations to generate :

- 1. Optimum Pipe Diameter of 1.5"
- 2. Pump Motor Size of 10 Hp
- 3. Carbon Footprint of 7 Lbs of CO2 per 1,000 hours of running time.



Using Pi (TT) to calculate the Energy to Pump a Fluid in a Pipe, and the Carbon Footprint of the Pumping Energy comparing different pipe sizes.

Pharmaceutical Production Facility: Where Pi is Applied

Reference: akshi SUSTAINABLE ENGINEERING SUSTAINABLE PRINCIPLES AND PRACTICE ENGINEERING

Joseph Yurko, P.E. Background:

Process Consultant with JAY of Northeast Ohio, LLC

- Xellia Pharmaceuticals USA, LLC (Novo Nordisk S/A), Cleveland, Ohio
- Kraft-Heinz Company, Frozen Foods Division, Massilon, Ohio
- Ben Venue Laboratories, Inc. (Boehringer-Ingelheim GmbH), Cleveland, Ohio
- Morrison Knudsen Corporation, Cleveland, Ohio

Licensed Professional Engineer

Emeritus member and Fellow of AIChE

Member of ACS, NSPE, and ISPE

Cleveland State University, Fenn College of Engineering

- Bachelor of Chemical Engineering
- Bachelor of Engineering Science
 - Distinction in Bioengineering