

Polyvinyl Chloride

Ford, Bacon & Davis, LLC

- Review Chlorine and Vinyl Chloride Monomer (VCM) Process Technologies
- Provide Overview Of Polyvinyl Chloride (PVC) Process
- Identify VCM Safe Handling Practices
- Explore Equipment Design Examples From PVC Processes

Chlorine

Chlorine Tree

eurochlor.org

Chlorine Tree – C2 Derivatives

Caustic-Chlorine

Siemens

Caustic - Chlorine Process

Markel Eclipse Membranes Brochure

Salt Dome To Electrolytic Cell

• Mercury

• Diaphragm

• Membrane

Mercury Electrolytic Cell

Diaphragm Electrolytic Cell

Production Chlor-Alkali – Best Available Techniques, JRC 2014

Diaphragm Electrolytic Cell

Diamond MDC Type

Chlor-Alkali Industry - Energy and Environmental Profile Of US Chemical Industry, Chapter 6

Diaphragm Electrolytic Cell

Hooker H Type

Diaphragm Cell Row

Occidental

Diaphragms

• Diaphragm

- Originally Asbestos
- Tephram (Non-Asbestos)
- Polyaramix (Non-Asbestos)
- Life: 200 to 400 Days

Anode Electrodes

- Coated Titanium
- 8 to 15 Years

Cathode Electrodes

- Carbon Steel
- 5 to 15 Years

Caustic-Chlorine Process – Diaphragm

Caustic-Chlorine Process – Membrane

Table 6-1. Characteristics of Various Chlorine/Sodium Hydroxide Electrolysis Cells					
Component	Diaphragm Cell	Mercury Cell	Membrane Cell		
Cathode	Steel/steel coating with nick el	Mercury flowing over steel	Steel or nickel with a nickel-based coating		
Anode	Titanium with ruthenium and titanium oxide coatings ; iridium oxide added to improve performance and extend life	Titanium with ruthenium and titanium oxide coatings; iridium oxide added to improve performance and extend life	Titanium with ruthenium and titanium oxide coatings; iridium oxide added to improve performance and extend life		
Diaphragm/ Membrane Material	Asbestos and fibrous polytetrafluoroethylene	None	lon-exchange membrane (fluorinated polymers)		
Cathode Product	10 to15% sodium hydroxide solution, containing 15 to17% salt (NaCl) (sentto evaporator for further processing); hydrogen gas	Sodium amalgam (sentfor further processing through a decomposer cell)	30-33% sodium hydroxide solution (sent to evaporator for further processing); hydrogen gas		
Anode Product	Chlorine gas containing some oxygen, salt, water vapor, andsodium hydroxide	Chlorine gas containing some oxygen, salt, and w <i>a</i> ter v <i>a</i> por	Chlorine gas containing some oxygen, salt, and water vapor		
Evaporator/Decom- position Product	50% sodium hydroxide solution containing 1% salt;solidsalt from evaporator	50% sodium hydroxide 50% sodium hydroxid solution; hydrogen gas salt			
Electricity Consumption	2,550 to 2,900 kWh/ton chlorine gas	3,250 to 3,450 kWh/ton chlorine gas	Vh/ton 2,530 to 2,600 kWh/ton chlorine gas		

Sources: Sittig 1977, EPA 1990, EPA 1992b, EPA 1995b, D.OW 1999.

The Chlor-Alkali Industry, Ch. 6 - Energy and Environmental Profile Of US Chemical Industry

	Mercury cell	Diaphragm cell	Membrane cell
Cell voltage/V	-4.4	-3.45	-2.95
Current density/A cm ⁻²	1.0	0.2	0.4
Current efficiency for $Cl_2/\%$	97	96	98.5
Energy consumption/kWh per ton of NaOH			
(a) Electrolysis only	3150	2550	2400
(b) Electrolysis + evaporation to 50% NaOH	3150	3260	2520
Purity Cl ₂ /%	99.2	98	99.3
Purity H ₂ /%	99.9	99.9	99.9
O_2 in $Cl_2/\%$	0.1	1-2	0.3
Cl ⁻ in 50% NaOH/%	0.003	1-1.2	0.005
Sodium hydroxide concentration prior to			
evaporation/%	50	12	35
Mercury pollution considerations	Yes	No	No
Requirement for brine purification	Some	More stringent	Very extensive
Production rate per single cell/tons			
NaOH per year Land area for plant of 10 ⁵ tons	5000	1000	100
NaOH per year/m ²	3000	5300	2700

Teknik Elektrokimia

Cell Power Distribution (1500 TPD Cl₂)

Brine Treatment

Chlorine

Vinyl Chloride Monomer (VCM)

Ford, Bacon & Davis, LLC

CHLORIDE (VCM)

Direct Chlorination

EDC Distillation

Polyvinyl Chloride (PVC)

VCM Polymerization

Plastic Types

• Thermosetting

- Cross-Linking During Curing
- High Temperature Applications
- Polyurethane, Polyester, Vinyl Ester, Epoxy

• Thermoplastic

- No Cross-Linking During Curing
- Recyclable / Remoldable
- Polyethylene, Polypropylene, PVC

• Suspension

- > 80% Market
- Multiple Purposes (Pipe, Building Materials, Medical Products)

Emulsion

- < 10% Market</p>
- Very Small Particle Size (Latex)
- PVC Coatings

Bulk / Mass

- < 5% Market</p>
- Hard Plastic Sheets/Bottles

Suspension Process

- In Water Suspension
- Exothermic / Organic Peroxide Initiator
- Multiple Recipes
 - Pipe Grade
 - Film Grade

Batch Reaction

- Reactors Clustered In Trains
- Transition From Batch To Continuous Operation

• VCM Recovery And Reuse

- 90% Conversion
- Minimize VCM Losses

Reactor Step	Minutes	Hours
Charge / Heat Up	45	0.75
Reaction	165	2.67
Pressure Drop	30	0.50
Blowdown / Recovery / Wash	60	1.00
Total	300	5.00

Demineralized Water

•

•

Dispersant

Initiator

Increasing PVC Production

Change	Purpose
Reactor Size	Larger Batches
Closed Mode Operation	Minimize Reactor Openings / Process Steps
External VCM Removal	Reduce Reactor Cycle Time / Continuous Slurry Stripping
Preheating Demin Water	Reduce Reactor Cycle Time
Clean Wall Technology	Reduce Reactor Cleaning Frequency / Increase Uptime

Heat Transfer

Reaction Heat Transfer Vs Time

Chilled Water Makeup

Chilled Water Flow Rate (gpm) Time (Minutes)

Chilled Water To Reactor Vs Reaction Time

Reactor Agitator Impeller

Pfaudler RCI Agitator Impeller

- Radial Design
- High Shear (Low Efficiency)
- Poor Pumping
- Long History With PVC Reactors

Low Pressure Drop Low Fouling Low Efficiency

Spiral Heat Exchanger

Liquid Ring Compressors

•

Gardner Denver Nash

Gardner Denver Nash

Wet-Seal Gas Holder

Dry-Seal Gas Holder

Membrane Separation

Membrane Separator

MEMBRANE BASES SEPARATION PROCESS

Decanting Centrifuge

- 1. VIBRATION ABSORBER
- 2. BASE
- 3. MAIN MOTOR
- 4. FEED TUBE

5. CONVEYOR 6. BOWL 7. SCREEN 8. COVER 9. BEARING SEAT
10. GEARBOX
11. LIQUIDS DISCHARGE
12. SOLIDS DISCHARGE

Decanting Centrifuge

McCabe, 4th Ed., "Drying Of Solids"

BM – PF Fluid Bed Dryer

BM – PF Fluid Bed Dryer

Centrifugal Fan

Cyclones

Sorenson

Filter Receiver

Ford, Bacon & Davis, LLC

Pressure Blower Package

Vacuum Blower Package

AIChE Straight Rotary Lobe Blower

- **1** Case
- 2 Heat Dissipation Ribs
- **3** Bearing Housing
- 4 Oil Fill
- 5 End Plate
- 6 Shaft Splines For Timing Gears

Rotary Valve

Rotary Valve Venting

Coperion K-TRON Aerolock

Vented Shear Protector

• Reduce Batch Cycle Time

• Reduce Energy Cost Per Batch

• Minimize VCM Exposure Risk To Personnel