

Drums

 Identify Differences Between Drums And Tanks

• Process Overview Of Drum Uses

• Mechanical Overview Of Drum Design

Pressure Vessel Vs Tank

- Designed To Contain Or Hold A Fluid
- Capable Of Withstanding Internal Pressure At Least 15 psi Above Atmospheric Pressure
- Cylindrical Section With Shaped Ends
- Fabricated of Metal Typically But Plastics Can Be Used
- Design and Construction Per Legal Code (ASME Section VIII)
- Protected From Overpressure By Pressure Relief Device (Relief Valve or Rupture Disk)

Design Criteria	Pressure Vessel	Tank
Pressure	15 psig & Greater	Less Than 15 psig
Temperature	Limited By Selected Materials	Preferably 200 °F Maximum
Capacity (Cost per Unit Volume)	Medium To High	Low
Design Standards	ASME Division VIII	API 650 (Up to 2.5 psig) API 620 (Up to 15 psig)
Pressure Safety	API 520	API 2000

Pressure Vs Design Options

PRESSURE (PSIG)

Process Overview

Process Applications

Process Applications

Alprocess Uses For Pressure Vessels

Service	Equipment Type
Accumulation Or Mixing Of Materials	Accumulator Drum
Reaction Chamber For Chemical Change Of Materials	Reactor
Separation By Chemical Means	Column Tower
Separation By Physical Means	Filter Separator

Orientation

Distillation System

Distillation System

Distillation System

Sulfur Recovery Unit

Sulfur Recovery Unit

Sulfur Recovery Unit

Filtration System

Filtration System

Filtration System

Mechanical Overview

Pressure Vessel Components

- Inside Diameter (D) Inside Diameter Of Vessel
- Outside Diameter (OD) Outside Diameter Of Vessel (Inside Diameter Plus Twice Wall Thickness)
- Length (L) Measured From Tangent Line Of Bottom Head To Tangent Line Of Top Head (Length of Shell)
- Wall Thickness (t) Varies Based On Design Pressure

Pressure Vessel Dimensions

PLAN VIEW

ELEVATION VIEW

Head Profile Vs Design Pressure

Hemispherical Head

2:1 Semi-Elliptical Head

Pressure Vessel Design

Pressure Vessel Design Criteria

- Correct Size For Process Use
- Ability To Contain Fluid Under All Expected Operating Conditions

- Proper Selection And Design Of Internals / Attachments For Process And Operational Use
- Provide Necessary Interface With Surrounding Process And Facility

Diameter Length Pressure Temperature Material Selection Corrosion Allowance

> Nozzles Supports Access

- Baffles To Aid Mixing Or Separation
- Catalyst With Support Grids For Reaction
- Cartridges or Media For Filtration
- Piping To Aid Gas or Liquid Distribution / Collection
- Trays or Packing To Aid Gas-Liquid Contact For Absorption, Distillation, or Stripping
- Ladder Rungs To Facilitate Access
- Baffle / Tray Manways To Provide Personnel Paths

Attachments

<u>Process</u>

- Agitators To Aid Mixing
- Jackets For Heat Transfer

<u>Supports</u>

- Skirt / Legs / Lugs
- Insulation Clips / Rings
- Pipe Clips

<u>Access</u>

- Ladders / Stairs
- Platforms
- Handrails

• Process Connections

• Operational Connections

• Instrument Connections

• Maintenance Access

Separator Design

Vertical Drum: Vapor-Liquid

Vertical Drum: Liquid-Liquid

Continuous Phase: Liquid (Heavy) Discontinuous Phase: Liquid (Light)

 Select Correct Orientation For Process Purpose

• Determine Appropriate Sizing Method

• Calculate Vessel Dimensions To Achieve Target Separation

Orientation	Application	Example
Vertical	Liquid Droplet Separation From Vapor	Compressor Suction Knockout Drum Fuel Gas Knockout Drum
Horizontal	Liquid – Liquid Separation (Light – Heavy Phases)	Hydrocarbon – Water Separator Overhead Accumulator (Reflux Drum)

Separator Sizing Methods

• Stokes (Vertical) - Rigorous

• Sauders-Brown (Vertical) - Simplified

• Disengagement Length (Horizontal)

LENGTH

DIAMFTFR

• Residence Time (Horizontal)

Vertical Liquid-Vapor Separator

Stokes Equation

Stokes Equation

- Ut = Kc * (Dnl Dnv) / Dnv)^0.5
 - Ut = Terminal Velocity (ft/s)
- Kc = Sizing Coefficient
- $Dnl = Liquid Density (lb/ft^3)$
- Dnv = Vapor Density (lb/ft³)

Sizing Coefficient

Kc = (4 / 3 * 32.2 * Dp / Cd) ^ 0.5

- Kc = Sizing Coefficient
- Dp = Particle Diameter (ft)
- Cd = Drag Coefficient

Particle Reynolds Number

- Re = 95,000,000 * Dnv * Dp^3 * (Dnl Dnv) / Viv^2
- Re = Reynolds Number (Particle)
- Dnv = Vapor Density (lb/ft³)
- Dp = Particle Diameter (ft)
- Dnl = Liquid Density (lb/ft³)
- Viv = Vapor Viscosity (cP)

Figure 7-3, <u>GPSA Engineering Data Book</u> - 11th Ed.

Ford, Bacon & Davis, LLC

Cd = exp(Y)

Y = 8.411 - 2.243 * X + 0.273 * X^2 - 0.01865 * X^3 + 0.0005201 * X^4

X = In (Re)

- Cd = Drag Coefficient
- Re = Reynolds Number (Particle)

Design Two-Phase Separators Within The Right Limits – CEP 10-1993

 Δ

The Global Home of Chemical Engineers

Drag Coefficient Comparison

Re	X	Y	Cd (Calc)	Cd (Figure 7-3)
10	2.30	4.48	88.29	60.00
20	3.00	3.68	39.73	35.00
40	3.69	3.01	20.33	20.00
70	4.25	2.55	12.79	14.00
100	4.61	2.28	9.81	10.00
200	5.30	1.83	6.21	0.42
400	5.99	1.43	4.18	0.46
700	6.55	1.15	3.15	3.00
1,000	6.91	0.98	2.67	2.70
2,000	7.60	0.68	1.98	2.00
4,000	8.29	0.41	1.50	1.50
7,000	8.85	0.20	1.23	1.20
10,000	9.21	0.08	1.09	1.00
20,000	9.90	-0.14	0.87	0.80
40,000	10.60	-0.34	0.71	0.68
70,000	11.16	-0.47	0.62	0.60
100,000	11.51	-0.55	0.58	0.55
200,000	12.21	-0.66	0.51	0.50
400,000	12.90	-0.73	0.48	0.48
700,000	13.46	-0.73	0.48	0.44
1,000,000	13.82	-0.70	0.50	0.42

Reynolds Number

Drag Coefficient Factor No. 1 Drag Coefficient Factor No. 2 Drag Coefficient

Re=95,000,000*Dnv*Dp^3*(Dnl-Dnv)/Viv^2 X=@ln(Re)

Y=8.411-2.243*X+0.273*X^2-0.01865*X^3+0.0005201*X^4 Cd=@exp(Y)

ΔΙ

Liquid		Water	SG = 0.99		
Vapor		Air MW = 29 Viv = 0.019 cP		сР	
Temperature		100	°F		
Pressure	Particle	Particle	Drag	Sizing	Terminal
	Diameter	Reynolds No.	Coefficient	Coefficient	Velocity
psig	microns				fps
100	32	10	84.49	0.007	0.077
100	100	316	4.76	0.054	0.57
100	500	39,512	0.72	0.31	3.3
100	1,000	316,093	0.49	0.54	5.6
100	1,450	963,650	0.49	0.64	6.8
500	20	11	78.52	0.006	0.029
500	100	1,374	2.31	0.078	0.38
500	300	37,094	0.73	0.24	1.2
500	600	296,753	0.49	0.41	2.0
500	890	968,528	0.49	0.50	2.5
1,500	14	10	86.19	0.005	0.013
1,500	100	3,715	1.55	0.095	0.26
1,500	200	29,722	0.78	0.19	0.52
1,500	400	237,774	0.50	0.33	0.92
1,500	640	973,922	0.49	0.43	1.2

ΔΙ

Liquid		Hydrocarbon	SG = 0.80		
Vapor		Methane	MW = 16	Viv = 0.013 cP	
Temperature		100	°F		
Pressure	Particle	Particle	Drag	Sizing	Terminal
	Diameter	Reynolds No.	Coefficient	Coefficient	Velocity
psig	microns				fps
100	32	10	89.96	0.007	0.090
100	100	301	4.89	0.054	0.68
100	500	37,584	0.73	0.31	4.0
100	1,000	300,673	0.49	0.54	6.8
100	1,450	916,638	0.49	0.65	8.2
500	20	11	82.47	0.006	0.035
500	100	1,320	2.36	0.077	0.46
500	300	35,647	0.74	0.24	1.4
500	600	285,173	0.49	0.41	2.5
500	900	962,460	0.49	0.51	3.0
1,500	14	10	87.45	0.005	0.016
1,500	100	3,672	1.55	0.095	0.32
1,500	200	29,377	0.78	0.19	0.64
1,500	400	235,016	0.50	0.33	1.1
1,500	640	962,627	0.49	0.43	1.4

Sauders-Brown

Equation

Ud = Ks * (DnI - Dnv) / Dnv)^0.5

Ud = Design Velocity (ft/s)

Ks = Sizing Coefficient (Simplified)

- Dnl = Liquid Density (lb/ft³)
- Dnv = Vapor Density (lb/ft³)

	Without	With	Maximum
Service	Mesh	Mesh	Allowable
Compressor Suction (Centrifugal)	0.17	0.25	0.35
Compressor Suction (Reciprocating)	0.17	0.20	0.35
Turbine Feed	0.08	0.15	0.25
Vapor/Liquid Separator (Vertical)	0.17	0.25	0.35
Vapor/Liquid Separator (Horizontal)	0.07	0.25	0.35
Overhead Accumulators	0.07	0.25	0.30
Flare Drum	0.30	Not Used	0.35
Steam Drum	0.07	0.20	0.25

Without Mesh – **No** Mist Eliminator (Coalescing Pad)

With Mesh – Includes Mist Eliminator (Coalescing Pad)

Δ

Simplified Sizing Coefficients

With Mesh				
Pressure	Sizing			
	Coefficient			
psia	fps			
0.5	0.17			
1	0.18			
2	0.22			
3	0.24			
5	0.27			
7	0.29			
10	0.32			
14.7	0.35			
30	0.35			
50	0.34			
70	0.33			
100	0.32			
500	0.28			
1,000	0.27			

The Global Home of Chemical Engineers

Service	Multiply Ks By
Without Mist Eliminator (Or Use Rigorous Stokes Equation)	0.5
Amine Solution Handling Glycol Solution Handling	0.6 to 0.8
Compressor Suction Scrubbers Expander Inlet Separators	0.7 to 0.8
Vapors Under Vacuum	Ks = 0.20 Maximum
Wet Steam	Ks = 0.25 Maximum

Simplified Sizing Coefficients

Lower	Upper	Correlation
psia	psia	
1	15	K = 0.1821 + 0.0029*P + 0.0460 * In(P)
15	40	K = 0.35
40	5,500	K = 0.43 - 0.023 *In(P)

With Mesh			Without Mesh
Pressure	Suggested Ks	Calculated Ks	Calculated Ks
psia	fps	fps	
0.5	0.17	0.15	0.08
1	0.18	0.19	0.09
2	0.22	0.22	0.11
3	0.24	0.24	0.12
5	0.27	0.27	0.14
7	0.29	0.29	0.15
10	0.32	0.32	0.16
14.7	0.35	0.35	0.17
30	0.35	0.35	0.18
50	0.34	0.34	0.17
70	0.33	0.33	0.17
100	0.32	0.32	0.16
500	0.28	0.29	0.14
1,000	0.27	0.27	0.14
1,500		0.26	0.13
3,500		0.24	0.12
5,500		0.23	0.12

Design Two-Phase Separators Within The Right Limits – CEP 10-1993

AICHE Sizing Coefficient Comparison

With Mesh			Without Mesh
Pressure	Suggested Ks	Calculated Ks	Calculated Ks
psia	fps	fps	
100	0.32	0.32	0.16
500	0.28	0.29	0.14
1,500		0.26	0.13

Liquid		Water	SG = 0.99		
Vapor		Air	MW = 29	Viv = 0.019	cP
Temperature		100 ^o F			
Pressure	Particle	Particle	Drag	Sizing	Maximum
	Diameter	Reynolds No.	Coefficient	Coefficient	Velocity
psig	microns				fps
100	250	4,939	1.42	0.16	1.4
500	170	6,750	1.24	0.14	0.58
1,500	135	9,141	1.12	0.13	0.30

Liquid		Hydrocarbon	SG = 0.80		
Vapor		Methane	MW = 16	Viv = 0.013	сP
Temperature		100 ^o F			
Pressure	Particle	Particle	Drag	Sizing	Maximum
	Diameter	Reynolds No.	Coefficient	Coefficient	Velocity
psig	microns				fps
100	250	4,698	1.42	0.16	1.7
500	170	6,486	1.26	0.14	0.70
1,500	135	9,035	1.12	0.13	0.37

Reference	Particle Size (microns)
GPSA (General Separator Sizing)	150
API 521 (Flare Knockout Drum)	300 to 600

Minimum Separator Diameter

- Identify Process Use Of Drums
- Determine Mechanical Design Of Drum That Best Fits Process Use
 - Safety
 - Environment
 - Cost Effectiveness
- Determine Key Elements Of Drum Design
 - Volume / Dimensions
 - Pressure / Temperature
 - Nozzles / Internals