Solar Cells -- Silicon & Beyond

Julia W. P. Hsu Materials Science & Engineering University of Texas at Dallas

University of Texas at Dallas

Materials Science & Engineering

- <u>https://mse.utdallas.edu/</u> (<u>https://youtu.be/zX7WCCYtse8</u>)
- Currently 17 tenured & tenure-track faculty
 - Computational (4.5) and experimental (12.5); Electronic materials; Surface & interfacial sciences; Biomedical, energy, environmental applications; Micro/nanoelectronic devices based on new materials
 - 2018-2021 publications: 368
- Total research expenditure in FY2024: \$13.3M (\$11.2M Federal)
- Graduate students (Fall 2024):
 - MSEN: 53 (47 PhD, 6 MS)
 - Graduate students from other (Physics, Chemistry, EE, MechE) programs supported/supervised by MSE faculty: ~ 10
 - B.S. will start Fall 2026

Why do we need solar?

Solar Growth in US

Solar Industry Research Data – SEIA

Adoption in Texas

Solar capacity additions are changing the shape of daily electricity supply in Texas - U.S. Energy Information Administration (EIA)

Solar Cells Everywhere

Residential

Utility: Solar Farm

How Do Solar Cells Work?

 \mathbf{O}

- Convert the energy of sunlight directly into electricity
 - Need: An electrode to let sunlight in Something to absorb sunlight & generate charges Device design to separate charges

How Does It Work?

- > 90% commercial solar cells are made of Si
- How to separate photogenerated electrons and holes?
- 1883: Charles Fritts, Au:Se Schottky juntion
- 1954: Chapin, Fuller, Pearson @ Bell Labs, diffused Si pn junction

State of the Art Solar Cell Efficiency

Best Research-Cell Efficiencies

Si Solar Cells

Residential

Utility: Solar Farm

III-V and Multi-junction Solar Cells

- Si is an indirect bandgap material
- III-V (GaAs, InP) Solar Cells: high efficiency due to direct bandgap, high cost, mostly used for space applications
- 2-, 3-, and 4-junction tandem solar cells

Thin Film Solar cells

• CdTe, Cu(In_xGa_{1-x})(S,Se)₂ (CIGS), amorphous Si

Concentrated Solar

Concentrated solar panels, often combined with solar thermal

State of the Art Solar Cell Efficiency

Best Research-Cell Efficiencies

State of the Art Solar Module Efficiency

Emerging Photovoltaics

- Small molecules; Polymers; Dye sensitized; Perovskites (CH₃NH₃PbX₃); CuZnSn(S,Se) (CZTSS)
- Flexible, light-weight, bandgap can be designed => colors
- Solution processible, conducive to roll-to-roll manufacturing

Different Device Structure

Organic Solar Cells

- A mixture (bulk heterojunction) of donors (donate electrons) and acceptors (accept electrons)
- First generation: Acceptors are C60 (bulky ball) based; donors are conjugated polymer
- Currently: Non-fullerene acceptors, much more complicated

P3HT:PCBM 19 eV 50 nm

L. Drummy, Chem. Mat. 23, 908 (2011)

Halide Perovskite Solar Cells

Si-Perovskite Tandem

State of the art efficiency: Perovskite: 27% Si: 26.1% Perovskite – Si tandem: 34.9%

Emergent Solar Cell Efficiency

Best Research-Cell Efficiencies

OPV Applications

Expo 2020 Dubai

Power Generating Windows

How does it work?

Agrivoltaics

Increasing Perovskite Solar Cell Production

- Take advantage of excellent materials properties from solution processing, high-speed solution coating methods, and economy of scale
- One manufacturing line may produce 4 GW of solar panels per year @ \$0.15/W (1.5 m web at 30 m/min)
- 10% of the capital cost of silicon solar panel manufacturing

Roll-to-Roll Manufacturing

- 1. Unwinder
- 2. Edge guide
- 3. Doctor Blade
- 4. Anilox roller
- 5. Hot air oven
- 6. Rewinder
- 7. Light table

Thermal Annealing Is Too Slow

https://www.sheknows.com/food-and-recipes/articles/1122129/worlds-longest-pizza/

- 1.15 mile long, took 11 hours => 2.8
 m/min
- 5 ovens
- Speed limited by the slowest step, i.e., time in the oven and oven size
- At 30 m/min, 20 min annealing translates to 600 m long ovens!

Use light instead of heat

Using Photons for Thin Film Processing

 $0 - 0.5 \, \text{ms}$

Film temperature depends on energy applied (light pulse) and lost (transfer to substrate) during pulse

Heat transfer to substrate continues after pulse

Substrate temperature depends on energy applied and substrate heat capacity

High intensity but low energy due to short pulse Film surface can reach high T with minimal substrate heating

Arrhenius Law => higher T, higher reaction rate

Optimize Photonic Curing Outcome

- Too many variables to optimize using traditional grid search method by varying one variable at a time
- Adopt Bayesian optimization framework in machine learning to find the processing condition that can produce the best result
- This approach can be adapted to all processing

Key Variables:

- Lamp voltage (light intensity)
- Pulse length (20 μs 100 ms)
- Number of pulses (1 n)
- Micropulses (0 30)
- duty cycle
- Pulse rate (< 1 Hz 50 kHz)

Sun Doesn't Shine All the Time

Solar capacity additions are changing the shape of daily electricity supply in Texas - U.S. Energy Information Administration (EIA)

Energy Storage is critical!

Thank You

Questions?