Ansys Simulation Solutions for Carbon Capture, Utilization and Storage (CCUS)

Rameche Candane Somassoundirame

Senior Application Engineer

- Introduction Carbon Capture, Utilization and Storage (CCUS)
 - Various Technologies CCUS
 - Application of the Various CCUS Technologies
 - CO₂ Capture Technology Patent Activity
 - Issues due to CO₂ Leakage
- Application of CFD to Simulate Carbon Capture
 - Case 1 Absorption of CO₂ with MEA
 - Case 2 Adsorption of CO₂ with K₂CO₃
 - Case 3 Cryogenic Distillation of CO₂

Why has Carbon Capture become so important?

- CO₂ emissions is the primary driver of global climate change.
- The amount of CO₂ emitted by the power and the energy sector running on fossil fuels constitutes approximately 65% of the total emission of GHG^{*}
- Substantial CO₂ emission reduction was agreed upon in the Paris agreement, 2015
 - Maintain the global average temperature rise below 2 °C

- Fossil fuels will still play a major role in future power production due to renewable energy limitations and hard to decarbonize industries.
- It is therefore necessary to remove CO₂ emissions at the source or through direct air capture.
 - Carbon Capture technology is the solution.
- NA leading with 13 active projects and 13 more in the pipeline. Century Plant in Texas being the largest, absorbing 8 Mt/yr of CO₂.

Biden-Harris Administration Announces \$3.7 Billion to Kick-Start America's Carbon Dioxide Removal Industry

DECEMBER 13, 2022

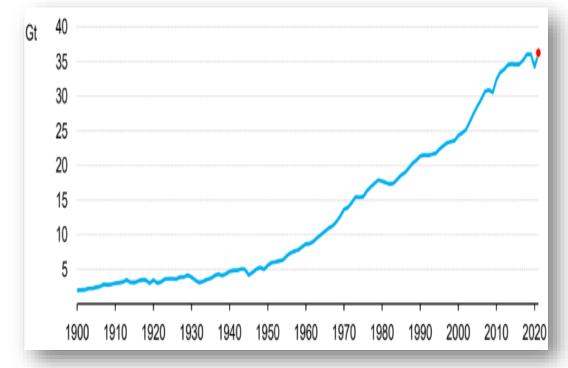
Department of Energy

*US EPA, Global Greenhouse Gas Emissions Data:

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

Carbon Capture and Sequestration – A Big Challenge

Carbon Capture

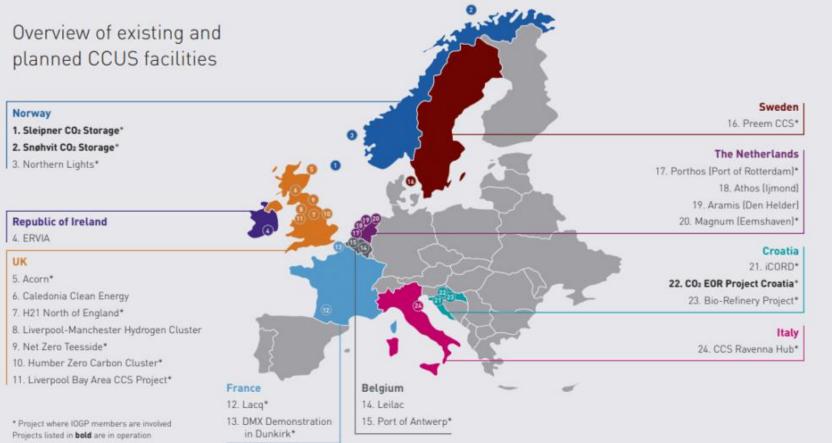

- Absorption/Adsorption/Membrane
 Separation/Cryogenic Distillation
- CO₂ Transport
 - Pipeline, Ships

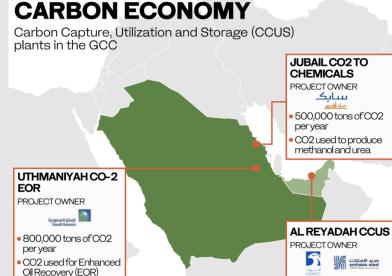
• CO₂ Utilization

Food industry, EOR, Concrete, Synthetic methane/HC

• CO₂ Storage

- Geological formations (seabed)
- Depleted Oil Wells




Global anthropogenic CO₂ emissions from 1900-2021

To stay below 2°C of warming, engineering solutions must grow at least 1,300 times by 2050. – American Energy Society (Feb. 2023)

Active/Future Projects in EMEA

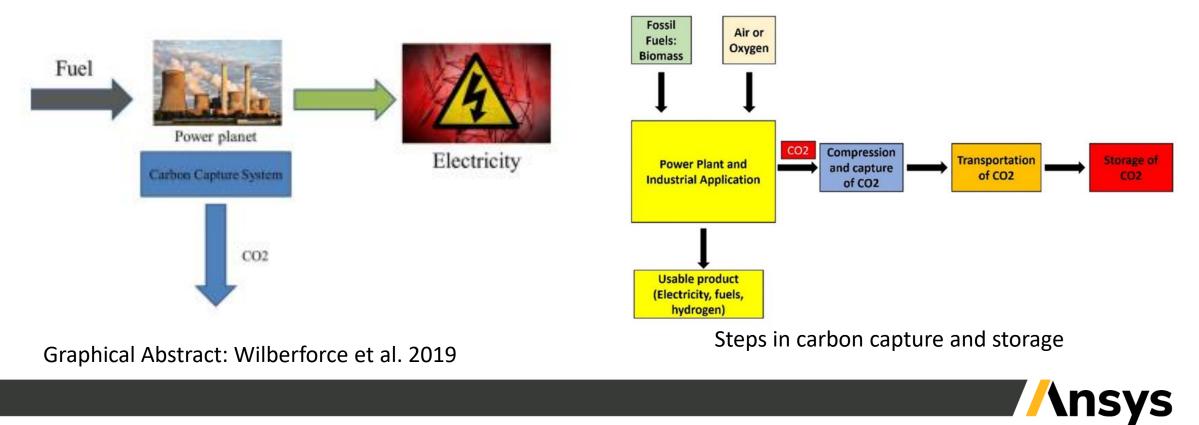
Source: Hydrogen Middle East Symposium 2020

ENABLING A CIRCULAR

https://www.europeanfiles.eu/climate/large-scale-decarbonisation-solutions-for-a-climateneutral-industry-and-jobs-in-europe

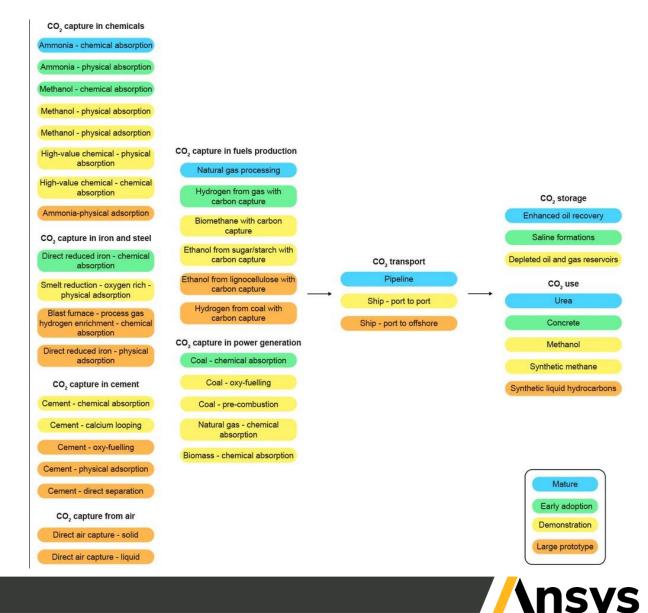
800,000 tons of CO2

CO2 used for Enhanced


Oil Recovery (EOR)

peryear

©2023 ANSYS, Inc.


Introduction – Carbon Capture, Utilization and Storage (CCUS)

- The main objective of carbon capture and storage technologies is to transform the carbon present in flue gases/emissions to carbon-di-oxide that in turn can be injected into underground geological formations.
- The carbon-dioxide must be liquified for easy transportation and storage.

Introduction – Carbon Capture, Utilization and Storage (CCUS)

- Carbon Capture (CC) Technologies
- CO₂ Transport
- CO₂ Sequestration

Introduction – Carbon Capture, Utilization and Storage (CCUS)

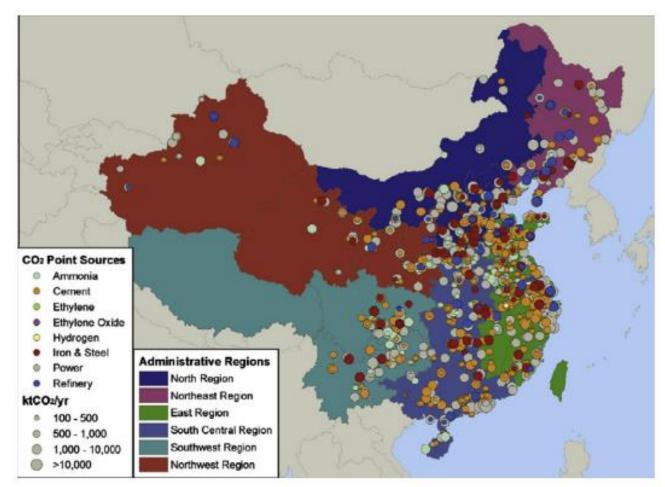


Fig. 1. Map of large CO₂ point sources by type, size, and administrative region in China [12].

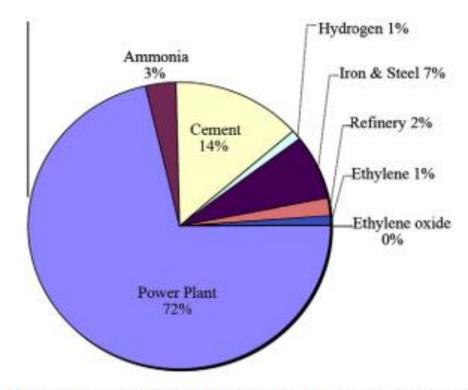
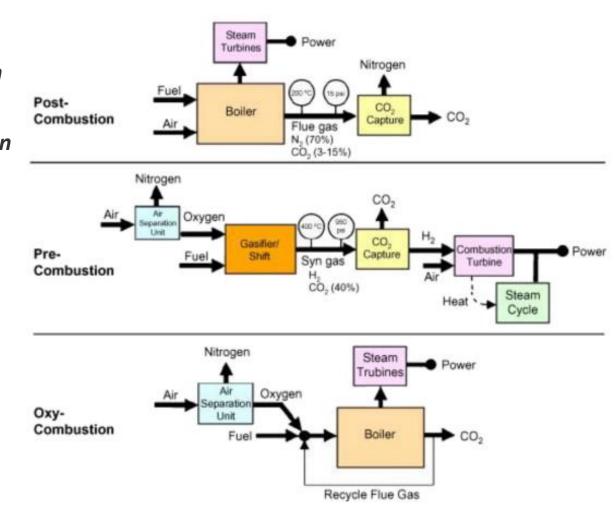


Fig. 2. The contributions of large point sources in each sector to overall total CO₂ emissions in China [12].

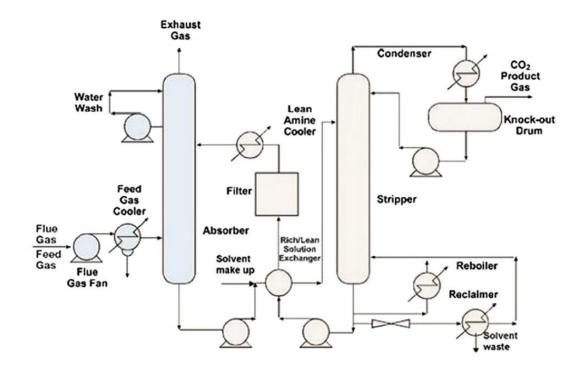

Post-combustion CO_2 capture is more suitable for the traditional pulverized coal power plants. Li et al. 2013

©2023 ANSYS, Inc.

Various Technologies – CCUS

- The technologies used for CCS are categorized based on when the carbon is eliminated as:
 - Pre-combustion systems (*commercially proven concept*) approx. 5%
 - Post-combustion systems (*commercially proven concept*) approx. 90%
 - Oxy-combustion systems (an option to postcombustion approach; *recent development*) – approx. 5%
 - Industrial Separation
 - Chemical Looping Combustion (CLC) precombustion carbon capture. CLC uses metal oxides as O₂ carriers to avoid dilution with N2 and emission of Nox. (Alalwan and Alminshid. 2021)
 - CO₂ concentration in gas stream and fuel type are important factors in capture system selection

Source: Figueroa et al. 2008

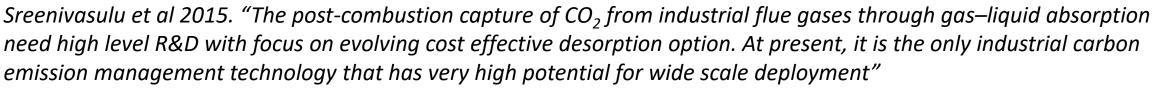

Various Technologies – CCUS (contd..)

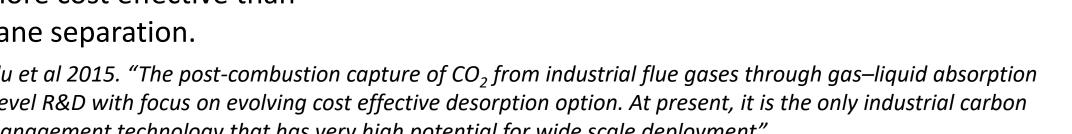
According to several authors, the only commercial technique in CO_2 capture and desorption is based on amine absorbents (Gomes, et al 2015; Greer et al 2010)

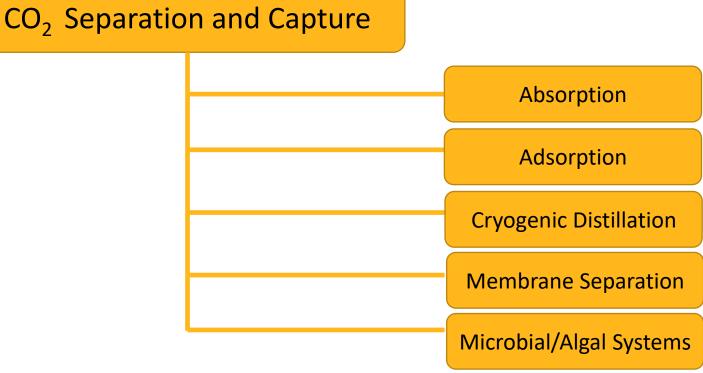
Mono-ethanolamine (MEA) scrubbing is

recognized as a well-established technology with 80–90 mol% CO₂ recoveries in power plants applications using 20–30 wt.% MEA aqueous solutions (Weiland et al., 1982; Escobillana et al., 1991)

<u>Absorption-regeneration technology</u> has been recognized as the <u>most matured process</u>, with amine-based or ammonia-based absorption processes receiving the greatest attention (Bai and Yeh, 1997; 1999; Rao and Rubin, 2002)

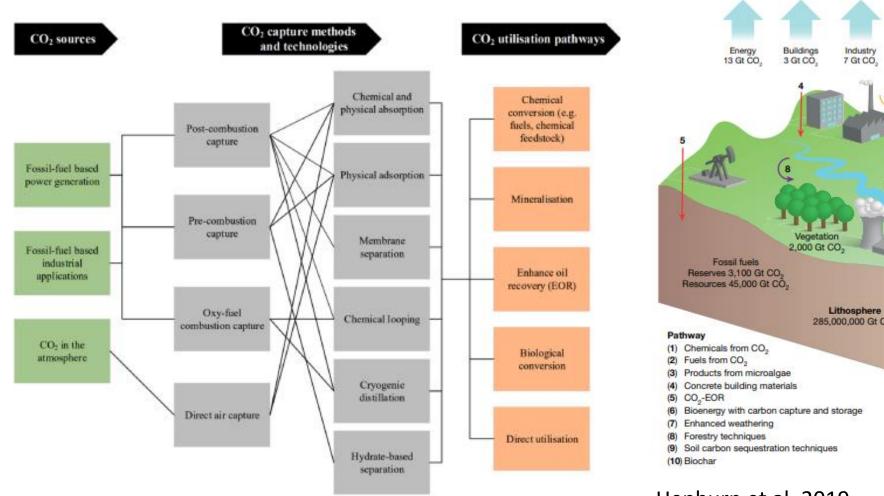


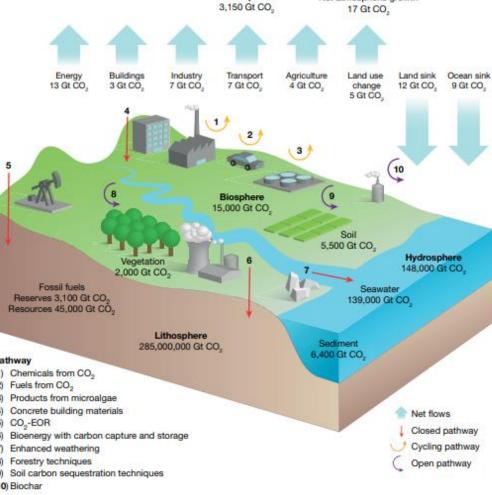

Carbon dioxide capturing method using an amine type post combustion



Various Technologies – CCUS (contd..)

- Carbon capture technologies can also be categorized based on how the carbon is eliminated.
- Membrane Separation, Absorption and Adsorption are the most widely adopted techniques of carbon capture (Li et al. 2013).
- Absorption and Adsorption are much more cost effective than membrane separation.



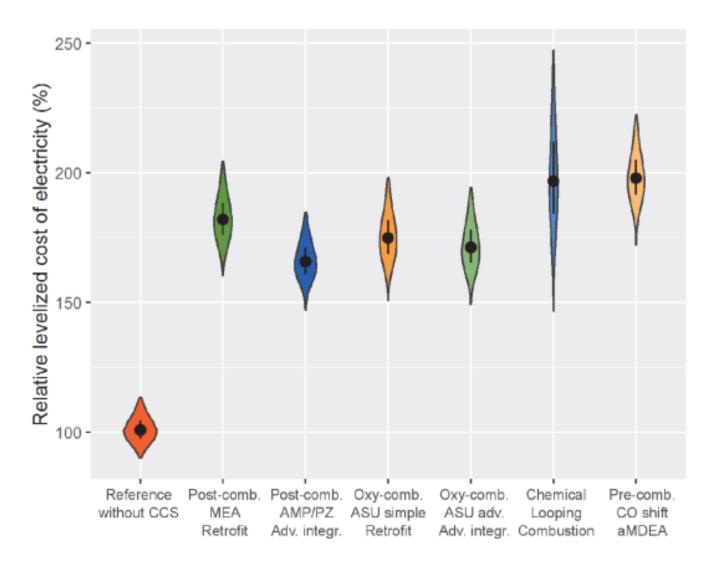


Various Technologies – CCUS (contd..)

• CO₂ Utilization Pathway

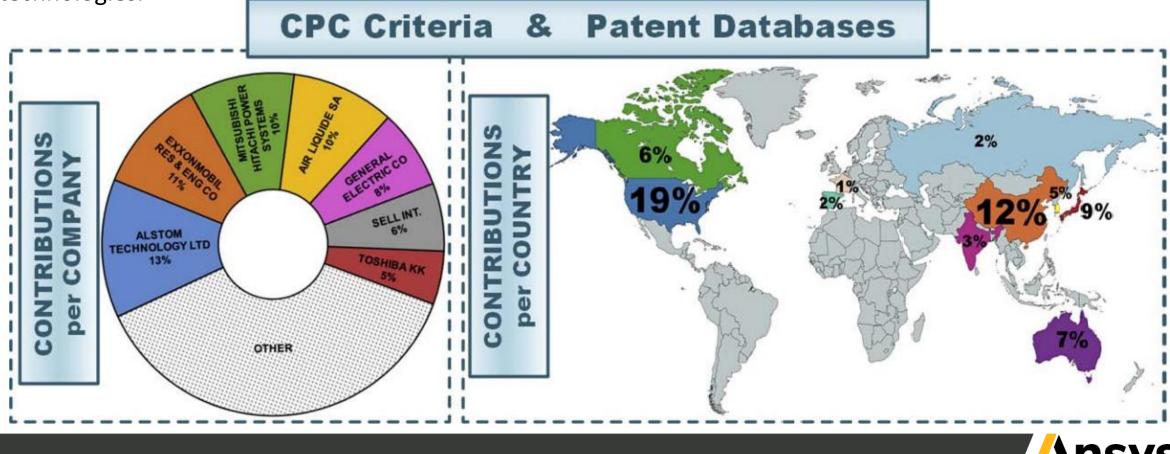
Atmosphere

Net atmospheric growth


Hepburn et al. 2019

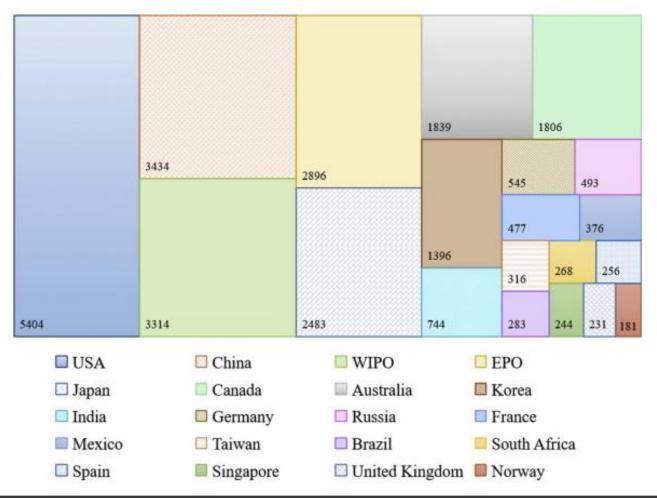
- A combination of enhanced oil recovery with a storage system will reduce the overall cost.
- For commercial and industrial power plants, post-combustion CO₂ capture is considered the matured type of technology compared to the others.
- Using solvent for the CO₂ capture is very important in post-combustion capture of CO₂.
- Researchers are also exploring the various type of solvent, design and an integrated solvent design for the capture of CO₂.

- Chemical absorption is suitable for low CO₂ feed i.e., < 20% because higher solvent recirculation rate and heavy duty.
- Membrane permeation is best suited for medium to higher CO₂ partial pressure compared to chemical absorption.
- 2010 Brazil pre-salt oil and gas field used membrane separation for CO₂ capture.
- Other high CO₂ content project could be found in pre-salt field in Brazil's offshore preoil field (Libra 48%; Jupiter 78%) and La Barge gas field in Wyoming. These projects use cryogenic distillation



Pathway	Post-comb.	Post-comb.	Post-comb.	Post-comb.	Oxy-comb.	Oxy-comb.	Pre-comb.
Technology	Amine absorption	Ammonia absorption	Activated carbon adsorption	Inertial extraction	Cryogenic	Chemical Looping Combustion	Chemical absorption
Maturity (TRL)	6-7	6-7	3-4	3-4	6-7	4-5	7
Net efficiency loss	7-8 %-pths	7-8 %-pths	6-7 %-pths	3-4 %-pths	7-8 %-pths	4-5 %-pths	6-7 %-pths
Energy performance	•	•	:	C	•	C	•
Economic performance	:	:	?	?	:	:	8
Operability	:	8	:	$\ddot{\mathbf{c}}$	<u>-</u>	;;	8
Flexibility	\odot	:	:	:	:	8	8
Risk	•	8	$\ddot{}$	$\ddot{}$	$\ddot{}$:	<u>-</u>
Market	Retrofit New built	Retrofit New built	Retrofit New built	Retrofit New built	(Retrofit) New built	New built	New built
Interest	Maturity	Stable and cheap solvent	No emission	No emission Performance Easy to build	Maturity No chemicals	Performance	Maturity Polygeneratio possible
Technological gap	Pollutant emission Solvent degradation	Seasonal variation Precipitation	Complex regeneration Solid ageing	CO2 quality	Start-up duration	Complexity O2 carrier solid	Operability Flexibility

Most of the patents are in capture technologies that use absorption and adsorption chemical processes. Companies such as Mitsubishi Hitachi Power Systems Europe GmbH, Alstom Technology Ltd., ExxonMobil Research and Engineering Company and Air Liquide SA dominate the development of these main capture technologies.


Routes to CO2 capture in power generation (by fuel)and industrial applications (by sector) [10].

		Syngas-hydrogen capture	Post-process capture	Oxy-fuel combustion	Inherent separation
First-phase industrial applications	Gas processing	-	-	-	Sweetening
	Iron and steel	Direct reduced iron (DRI)*, smelting (<i>e.g.</i> Corex)		Oxy-fuel combustion	DRI*
	Refining	-	-	-	Coal-to-liquids; synthetic natural gas from coal Hydrogen production
-pha	Chemicals	_	-	-	Ammonia/methanol
First	Biofuels	-	-	-	
	Biorueis	- Constanting and	-	-	Ethanol fermentation
tion	Gas	Gas reforming and combined cycle	Natural gas combined cycle	Oxy-fuel combustion	Chemical looping combustion
Power generation	Coal	Integrated gasification combined cycle (IGCC)	Pulverised coal-fired boiler	Oxy-fuel combustion	Chemical looping combustion
Ром	Biomass	IGCC	Biomass-fired boiler	Oxy-fuel combustion	Chemical looping combustion
sue	Iron and steel	Hydrogen reduction	Blast furnace capture	Oxy-fuel blast furnace	-
applicatio	Refining	Hydrogen fuel steam generation	Process heater and combined heat and power (CHP) capture	Process heater and CHP oxy- fuel	-
Second-phase industrial applications	Chemicals	-	Process heater, CHP, steam cracker capture	Process heater and CHP oxy- fuel	-
hase	Biofuels	Biomass-to-liquids	-	-	Advanced biofuels
d-pu	Cement	-	Rotary kiln	Oxy-fuel kiln	Calcium looping
Secu	Pulp and paper	Black liquor gasification	Process heater and CHP capture	Process heater and CHP oxy- fuel	-
	Le	egend: technical maturity	of operational CO2 caj	oture plants to d	ate
				1	

Commercial	Demonstration	Pilot	Lab or concept

Invention field	I	Patent families	Patent documents
Capture by bio	Capture by biological separation		687
Capture by che	emical separation	2850	11,463
Absorption		2643	10,550
Adsorption		2164	7743
Membranes		787	2749
Rectification-c	ondensation	460	2242
25%		E	Generated
15% 10% 5%			
USA China WHO ERO Japan Canada Australia Korea India comany Russia France Mesico Taiwan			

• Distribution of the total amount of patents per country

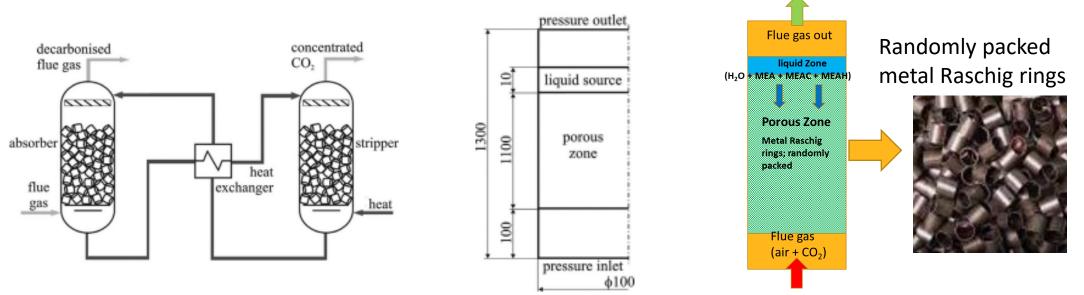
©2023 ANSYS, Inc.

Classification of companies per CPC technology.

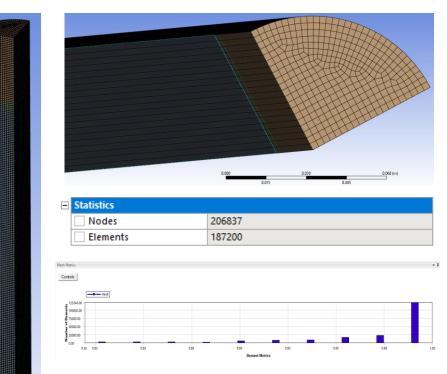
Capture technology (CPC code)	Applicant			
	Generation	Publication		
Biological separation (Y02C 10/02)	CO ₂ Solutions Inc. (10%) Sfn Biosystems Inc. (3%) Alstom Technology Ltd. (3%) Rogmans Maria (3%) Cybel Holding Sa (2%)	Alstom Technology Ltd. (9%) CO ₂ Solutions Inc. (8%) Novozymes A/S (5%) Akermin Inc. (4%) Morphic Technologies Ab (3%)		
Chemical separation (Y02C 10/04)	Mitsubishi Hitachi Power Systems Europe GmbH (8%) Alstom Technology Ltd. (6%) General Electric Co. (2%) Kansai Electric Power Co. Inc. (2%) ExxonMobil Research and Engineering Company (2%) Korea Inst Energy Res (2%)	Mitsubishi Hitachi Power Systems Europe GmbH (10%) Alstom Technology Ltd. (9%) General Electric Co. (4%) ExxonMobil Research and Engineering Company (3%) Kansai Electric Power Co. Inc. (3%)		
Absortion (Y02C 10/06)	Mitsubishi Hitachi Power Systems Europe GmbH (10%) Alstom Technology Ltd. (6%) Toshiba KK (4%) Kansai Electric Power Co. Inc. (3%) Siemens AG (3%)	Mitsubishi Hitachi Power Systems Europe GmbH (12%) Alstom Technology Ltd. (9%) Toshiba KK (5%) Kansai Electric Power Co. Inc. (4%) General Electric Co. (4%)		
Adsorption (Y02C 10/08)	Air Liquide SA (4%) ExxonMobil Research and Engineering Company (4%) Mitsubishi Hitachi Power Systems Europe GmbH (3%) Air Products and Chemicals Inc. (3%) Nippon Steel and Sumitomo Metal Co. (2%)	ExxonMobil Research and Engineering Company (7%) Air Liquide Sa (5%) Air Products and Chemicals Inc. (4%) Mitsubishi Hitachi Power Systems Europe GmbH (4%) Praxair Technology Inc. (3%)		
Membrane (Y02C 10/10)	UOP LLC (7%) FujiFilm Corporation (5%) General Electric Co. (4%) Membrane Technology and Research Inc. (4%) Air Liquide SA (3%) Tianjin University (3%)	UOP LLC (7%) General Electric Co. (5%) Kilimanjaro Energy Inc. (5%) FujiFilm Co. (4%) Shell Internationale BV (4%)		
Rectification & condensation (Y02C 10/12)	Air Liquide SA (23%) ExxonMobil Research and Engineering Company (8%) Shell Internationale Research Maatschappij BV (6%) Alstom Technology Ltd. (5%) BP Alternative Energy International Ltd. (4%)	Air Liquide SA (25%) ExxonMobil Research and Engineering Company (9%) Alstom Technology Ltd. (9%) Shell Internationale Research Maatschappij RV (6%)		

Issues due to CO₂ Leakage

- The leakage of CO₂ as a result of transportation can destroy groundwater, plant life and soil quality.
- Exposure to high amount of CO₂ can ultimately lead to death.


Ansys Solution Overview

Post-Combustion Carbon Capture – Absorption


- Absorption using Amine Solvent
- The process flow diagram for CO₂ absorption and the geometry considered for investigation are shown below:

 Objective: To determine the concentration of CO2 at the flue gas outlet and compare it with experimental data

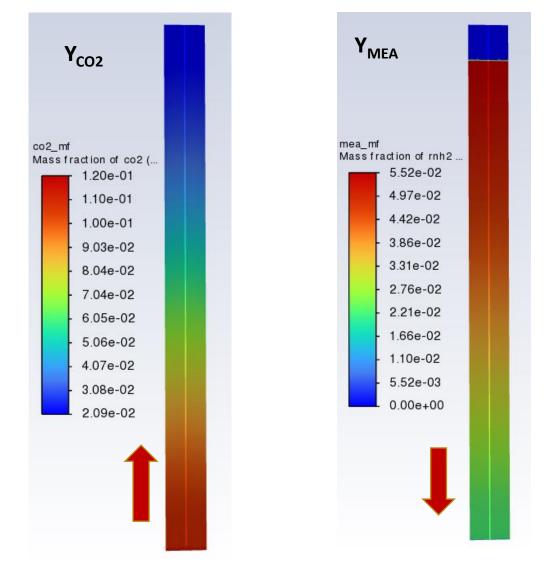
Source: P. Niegodajew, D. Asendrych. Amine based CO2 capture – CFD simulation of absorber performance, Applied Mathematical Modelling, 40 (2016), 10222-10237

3 Dimensional $-1/4^{th}$ of the geometry (even a pi slice would work!)

A mesh sensitivity analysis has been carried out to determine the optimal number of elements Operating conditions for the flue gas and amine solvent

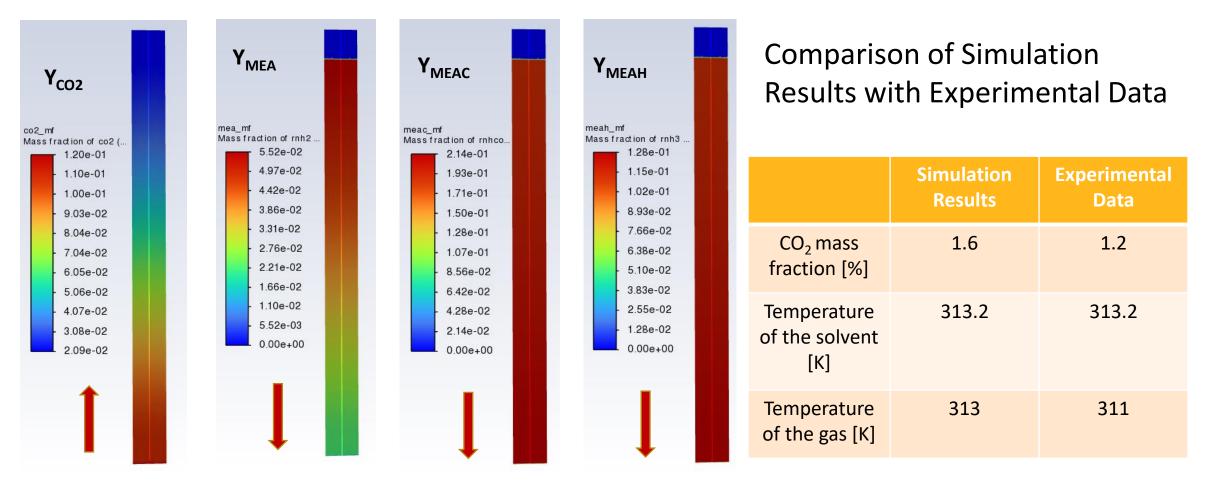
	Flue gas	Amine solvent
Volumetric flux [m ³ /h]	8	0.054
Mass fraction [%]	Air – 88 CO ₂ - 12	H2O – 64.42 MEA+MEAH+MEAC – 35.58
Temperature [K]	298.5	313

The mass fractions of amine species in liquid bulk equal to: $Y_{MEA} = 5.52\%$ (mass fraction of Mono-Ethanol Amine (MEA)) $Y_{MEAH} = 11.23\%$ (mass fraction of protonated MEA) $Y_{MEAC} = 18.83\%$ (mass fraction of carbamated MEA)


- Governing Equations:
 - Euler-Euler formulation
 - Chemistry of CO2 absorption by aqueous monoethanolamine solution is regarded as a non-reversible equation of the form

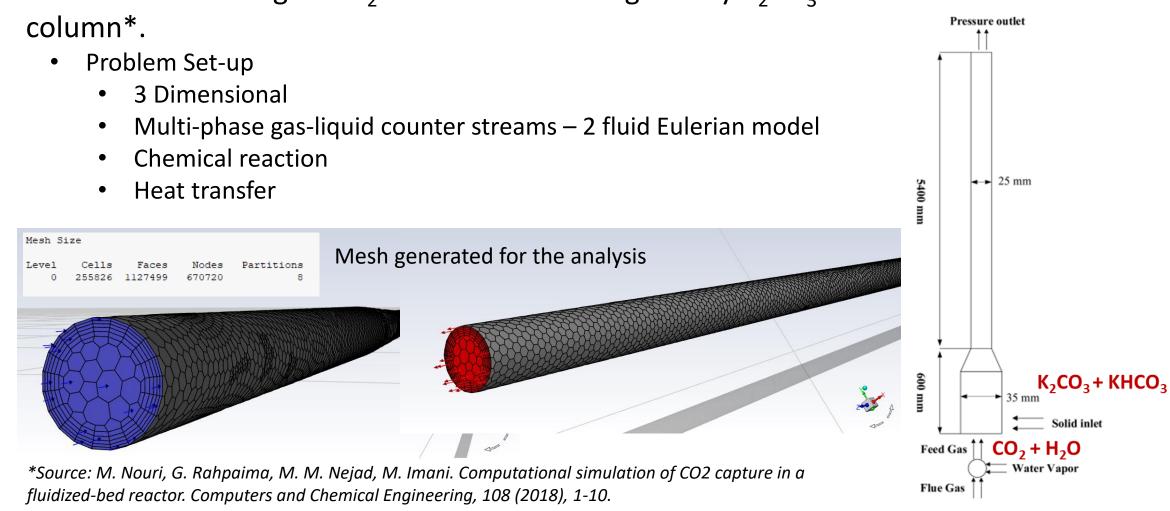
 $CO_2 + 2RNH_2 \rightarrow RNHCOO^- + RNH_3^+$

- First term on the right hand is carbamated MEA and the second one is protonated MEA
- The reaction rate constant as a function of temperature may be approximated by the following expression


 $\log(k) = 10.99 - 2152/T$

- The collision frequency and the activation energy are obtained from this eqn.

• Contours of species mass fraction after the chemical absorption process is complete

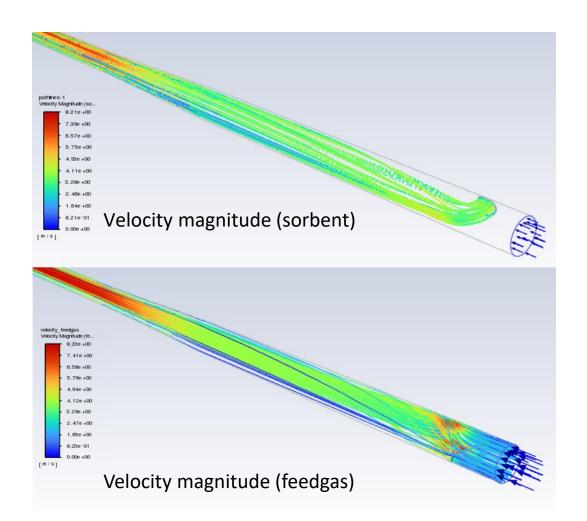


Post-combustion carbon capture – Adsorption

Post-combustion carbon capture – adsorption using K_2CO_3

Numerical modeling of CO₂ removal from flue gases by K₂CO₃ in an absorber

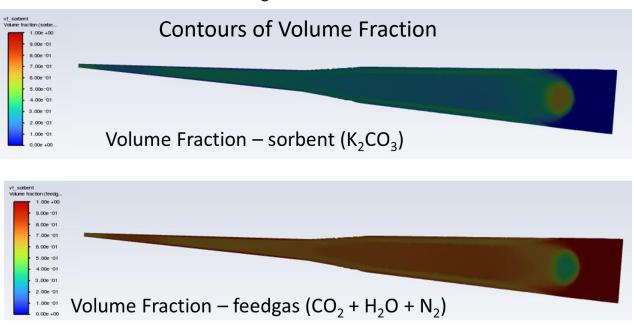
Post-combustion carbon capture – adsorption using K₂CO₃


• Operating conditions for the feed gas (CO₂ + H_2O) and potassium carbonate (K_2CO_3)

	Feed gas	K ₂ CO ₃ + KHCO ₃
Velocity at the Inlet [m/s]	1.7, 2, 2.5 and 3	-
Mass flux [kg/m ² s]	-	21
Mass fraction [%]	$CO_2 - 9.6$ $H_2O - 19.6$ $N_2 - 70.8$	K ₂ CO ₃ – 100 KHCO ₃ - 0

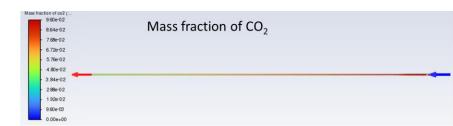
- Particle diameter = 98 microns (mention parcel diameter)
- Particle density = 1100 kg/m³
- Euler-Granular; 2-Phases; Secondary Phase

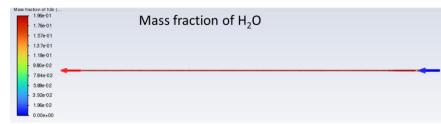
Post-combustion carbon capture – adsorption using K₂CO₃

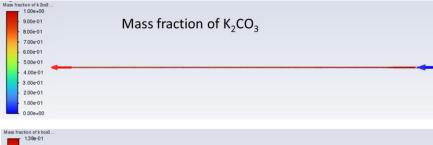


Heterogenous Reaction:

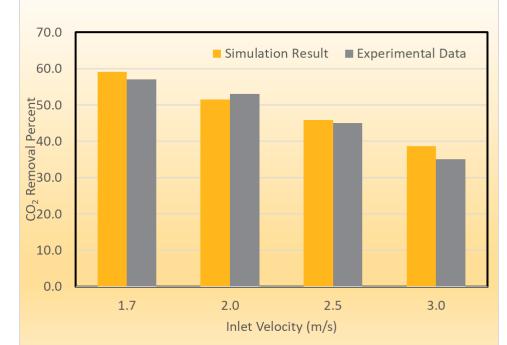
Chemistry of CO2 adsorption by the solid sorbent Potassium Carbonate in the carbonation reaction is described as follows:


 $K_2CO_3 + H_2O + CO_2 \rightarrow 2KHCO_3$


 $k = 55.0 \exp(3609/RT_g))$

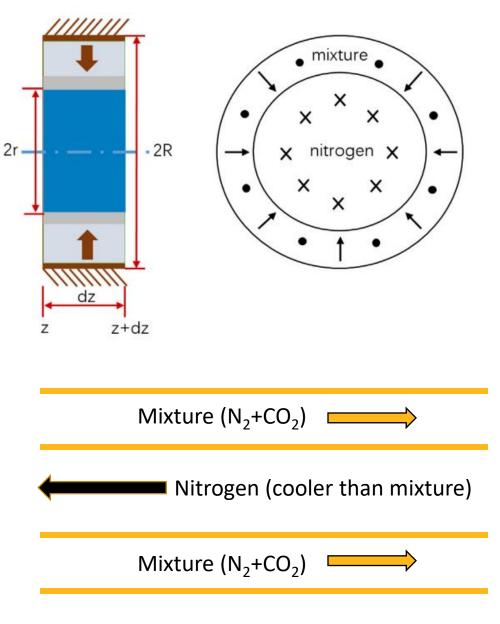


Post-combustion carbon capture – adsorption using K₂CO₃



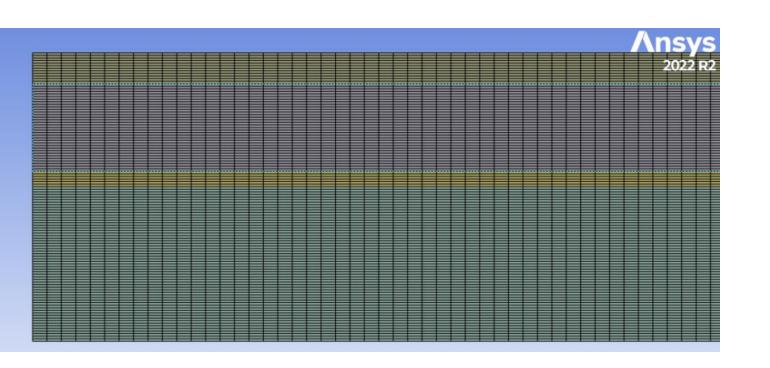
- 1.24e-01		
• 1.11 0 -01	Mass fraction of KHCO ₃	
9.68e-02	5	
- 830e-02		
6.91e-02		
5.53e-02		
- 4.15e-02		
- 2.77e-02		
- 138e-02		
0.00e+00		

Inlet Velocity [m/s]	Simulation Results	Experimental Data	% Variation
1.7	59.2	57.0	3.8
2.0	51.5	53.0	-2.9
2.5	45.8	45.0	1.9
3.0	38.6	35.0	10.4


©2023 ANSYS, Inc.

Cryogenic Distillation

Analysis – Test Case

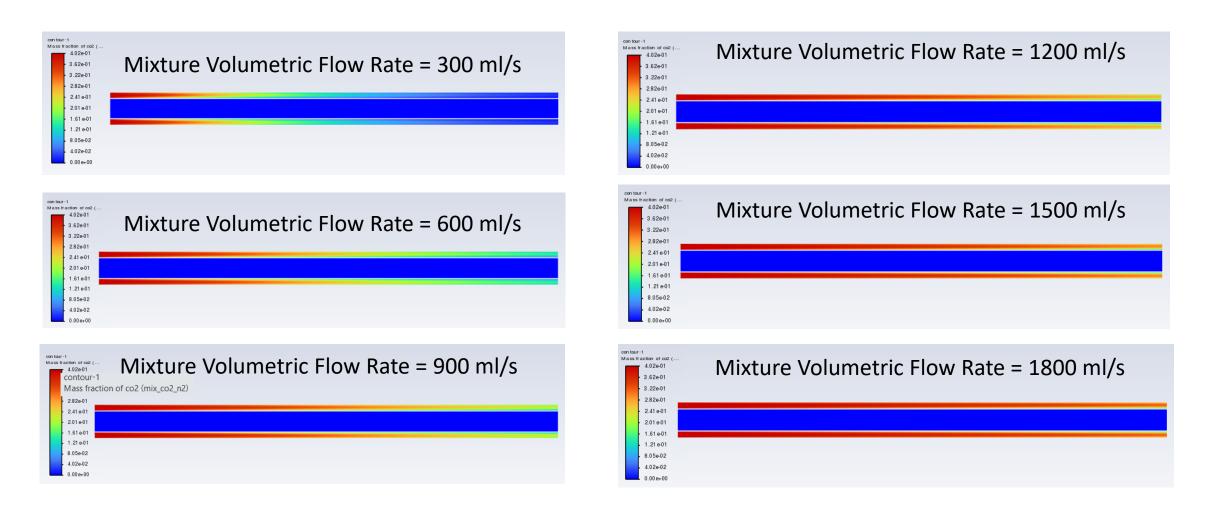

- The inner diameter and wall thickness of the stainless-steel tube through which nitrogen coolant flows is 30 mm and 1.5 mm respectively.
- The inner diameter and wall thickness of the outer glass tube is 50 mm and 3 mm respectively.

Mesh Generated

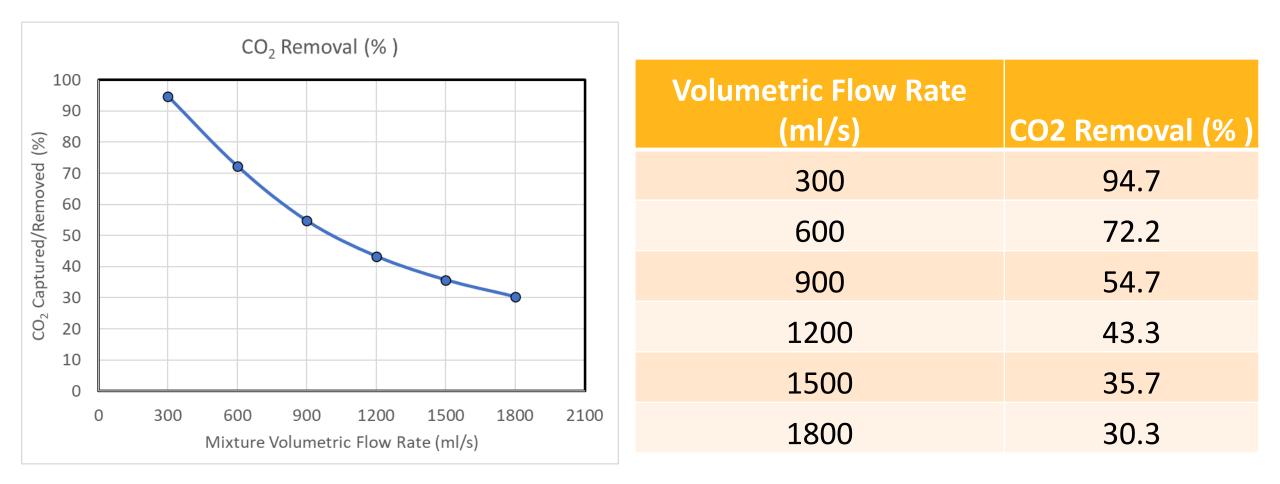
- Geometry considered for the analysis is axisymmetric
- Number of elements used for the current study is 56000

D	Details of "Mesh" \checkmark \square X			
=	Display			
	Display Style Use Geometry Setting			
Ξ	Defaults			
	Physics Preference	CFD		
	Solver Preference	Fluent		
	Element Order Linear			
	Element Size Default (3.5028e-002 m)			
	Export Format	Standard		
	Export Preview Surface Mesh	No		
+	Sizing			
+	Quality			
+	Inflation			
+	Batch Connections			
+	Advanced			
Ξ	Statistics			
	Nodes	56613		
	Elements	56000		

Boundary Conditions


- Inlet volumetric flow rate = 300ml/s
- Inlet temperature of the mixture = 179K
- Mole fraction of CO2 in the mixture = 0.2

- Inlet volumetric flow rate of coolant/Nitrogen = 600ml/s
- Inlet temperature of the coolant/Nitrogen = 96K



Results - Effect of Volumetric Flow Rate on CO₂ Capture

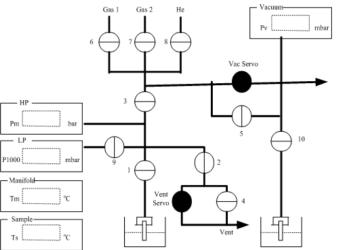
Results - Effect of Volumetric Flow Rate on CO2 Capture

//nsys

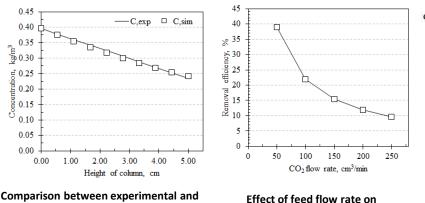
Other Studies from Literature

CO₂ Capture in Gasification System—Adsorption

Customer Goals


- Investigate the feasibility of activated carbon derived from agricultural waste, palm mesocarp fiber, as an adsorbent for CO₂ capture
- Determine **optimum** range of operating conditions, gas inlet feed flow rate and inlet feed composition particle diameter

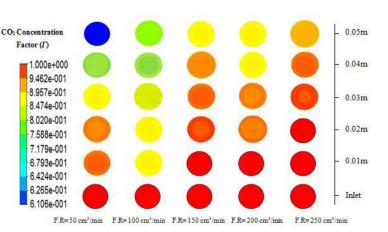
Solution


- Multiphase flow modeling analysis with capability to model gas-solid flows to accurately capture the flow hydrodynamics
- Mass transfer to describe carbon adsorption by the activated carbon media
- High speed HPC for design and troubleshooting

Benefits

- Better insight in virtual environment to design efficient, cleaner and reliable system
- Good comparison with experimental data
- Efficient scale-up from lab to commercial

Schematic Diagram of Experimental Apparatus (HPVA)


simulated adsorbed concentrations for CO_2 CO₂ removal efficiency

Abdullah and Qasim, "Parametric Analysis of Carbon Dioxide Adsorption on Nanoporous

F.R=50cm³/min F.R=100cm³/min F.R=150cm³/min F.R=200cm³/min F.R=250cm³/min

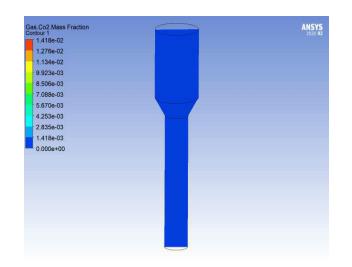
Effect of Feed Flow Rate on Bed CO₂ Concentration Factor

Radial Profile for CO_2 Concentration Factor at Different Flow Rate

Activated Carbon Using Computational Approach," Procedia Engineering 148 (2016) 1416-1422

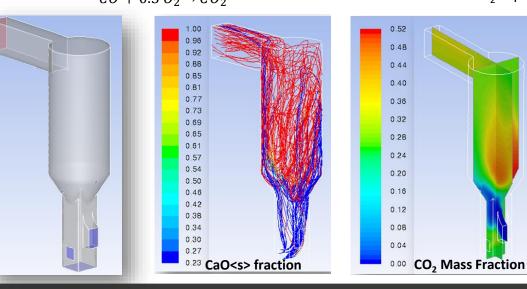
Calcination Process

Customer Goals


- Improve efficiency of carbon capture via calcium looping and calcination processes
- Achieve optimized design and efficient scale-up
- Minimize energy usage in the process

Solution

- Accuracy Validated solutions calcium looping and calcination processes
- High-fidelity Multiphysics analysis with HPC for design and troubleshooting


Benefits

- Better insight in virtual environment to design efficient, cleaner and reliable system
- Reduced physical testing, TTM and R&D costs
- **Reduced downtime** in retrofitting and revamping
- Efficient scale-up from lab to commercial

Solution for CO₂ distribution in dense fluidized bed for FCC regenerator

 $(\varphi + 1)C + (\varphi + 0.5)O_2 \rightarrow \varphi CO_2 + CO$ $CO + 0.5 O_2 \rightarrow CO_2$

Fluidized beds and regenerators for sorbentbased CO₂ capture technologies

Calcination process using flash calcinatory to regenerate limestone and release CO₂

CO₂ Transport and Storage

CO₂ Pipeline Transport

Customer Goals

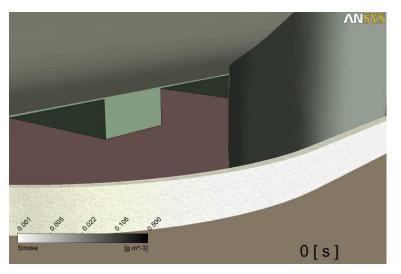
- Predict CO₂ dispersion pattern in case of leak from pipeline
- Assess the impact of CO₂ plum on surrounding environment under different operating conditions

Solution

- **Modeling Fidelity** ability to capture complex terrains and city layout, plume transport
- Investigate different flow conditions and assess impact on environment in case of leak incidents

Benefits

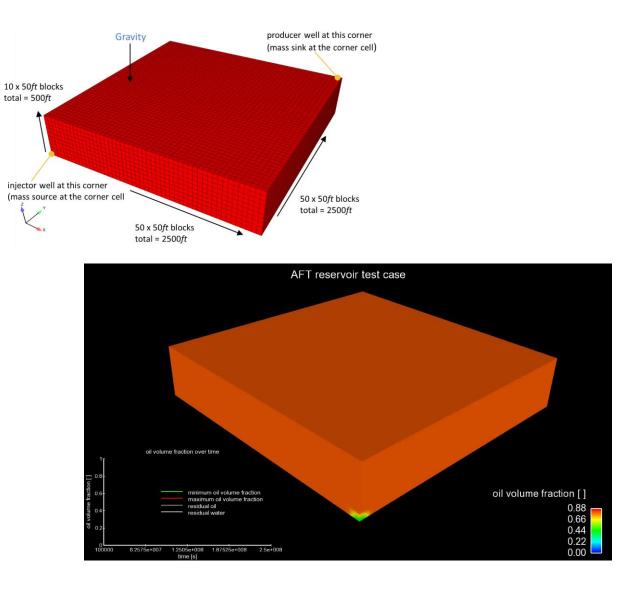
- Using Ansys simulation tools, facility managers, designers, and engineers can gain valuable insights into the environmental impact CO₂ leaks
- Ansys simulations can be used to modify layout and/or equipment specifications to remedy unacceptable conditions



Pollutant plum effect on city buildings

Courtesy of BDP Engineering

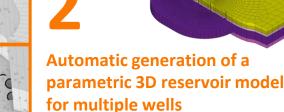
Smoke dispersion in large building

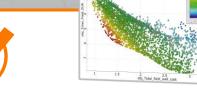


©2023 ANSYS, Inc.

CO₂ Storage

- Captured CO₂ can be stored
 - Geological reservoir (EOR)
 - Ocean
 - Lakes
 - Dissolution


- Need to understand CO₂ flow inside O&G wells (porous media)
 - Wettability
 - Saturation levels


CO2 Storage - THM Simulator workflow for fracking Optimization

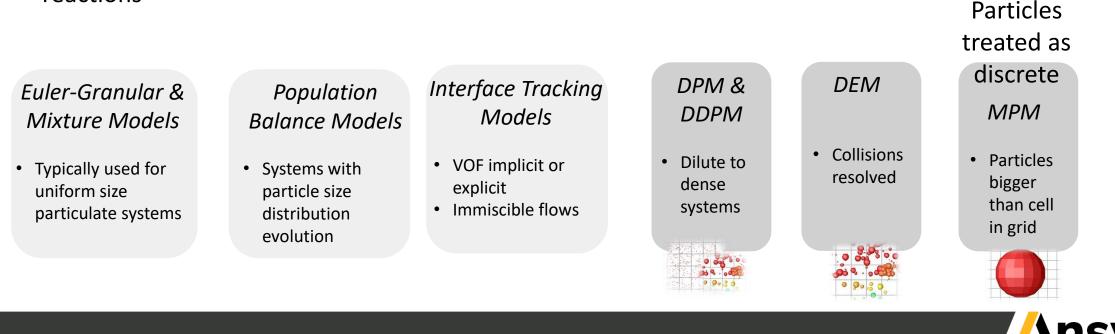
Reservoir model calibration to the best available data including micro seismic data

Generate Pareto optimality between estimated ultimate recovery uplift and related unit development costs Find optimal operation under variable (updated) Reservoir conditions

A spectrum of physical set of

Generate ML-based metamodels using upfront simulation regarding reservoir uncertainties and operational variability

Ansys Hydraulic Fracturing Simulator using Ansys Mechanical for FEM based simulation of hydraulic fracturing and optiSLang for calibration, sensitivity study, metamodeling and optimization Ansys ACE: Martin Husek


Will, J.; Eckardt, S.: Optimization of Hydrocarbon Production from Unconventional Shale Reservoirs using Numerical Modelling

©2023 ANSYS, Inc.

ANSYS Multiphase Flow Modeling Solutions

- Key differentiators
 - Accuracy and speed of the Fluent solver.
 - Customization
 - Platform implementation (DT, ROMs, Optislang)
 - Wide variety of Physical models to address complex multiphase flows with heat/mass transfer and reactions

Key Take-aways

- Carbon dioxide removal is a hot topic of research with lots of projects currently underway both in the government and private sector.
- Ansys solutions are available to share with our clients
 - Application Briefs, Best Practices, Tutorials, Webinars, Demos.
- Ansys Sustainability ACE Team is already engaged with some accounts.
- These solutions are not limited to Oil & Gas. Other industries such as Chemicals, Industrial and manufacturing are good targets too.
- Please contact us, the CCUS Sustainability Team at Ansys, to discuss future opportunities.

