Oil Refineries

Overview, Unit Interrelationships, & Some Unique Perspectives

By Bob Stevens

Project Engineering Manager (Retired) Bechtel Corporation – 02/28/2023

1

My Background

Over 12 years experience – Retrofit and grass roots projects

University Course – Co-taught Both Seniors and Graduate Students

Corporate Seminars – Taught

Trained to "Cut Coke" at age 19

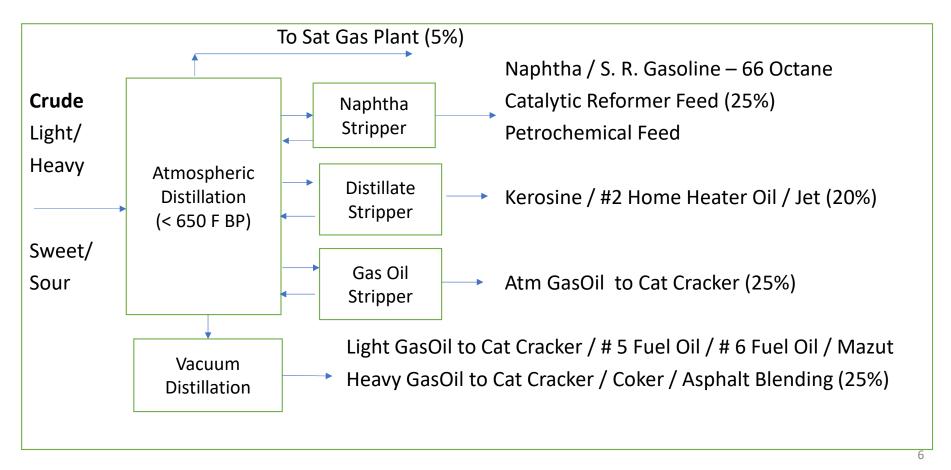
Short to Intermediate Term Perspective

"Oil Demand Seen Hitting (All Time) Record in 2023"

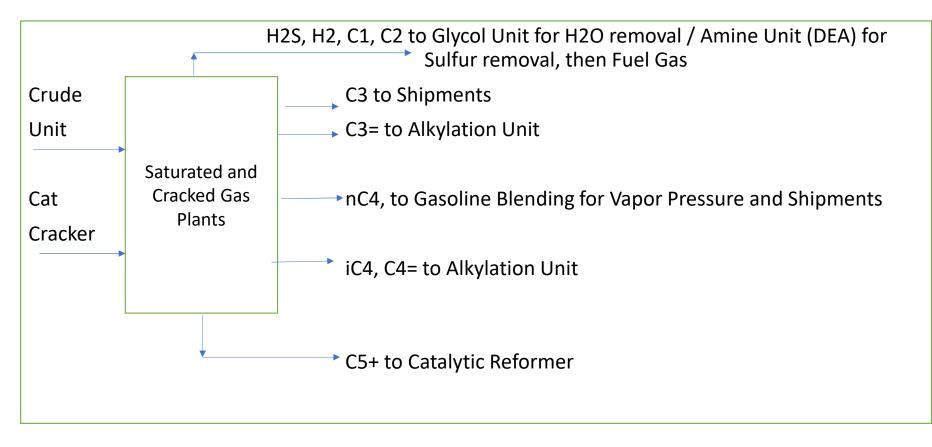
- Wall Street Journal Headline - January 19, 2023 (Page B-11)

"The News of My Demise has been Greatly Exaggerated" - Mark Twain

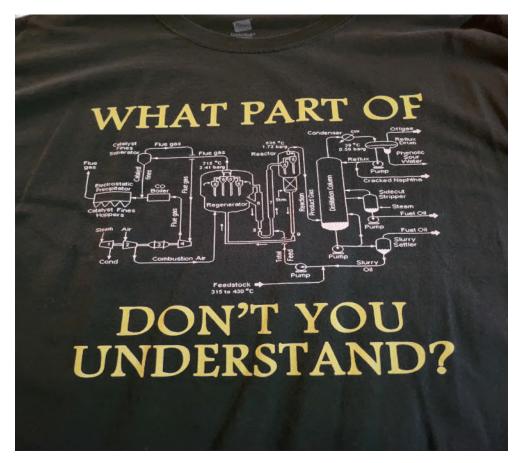
Definitions


PONA ACRONYM

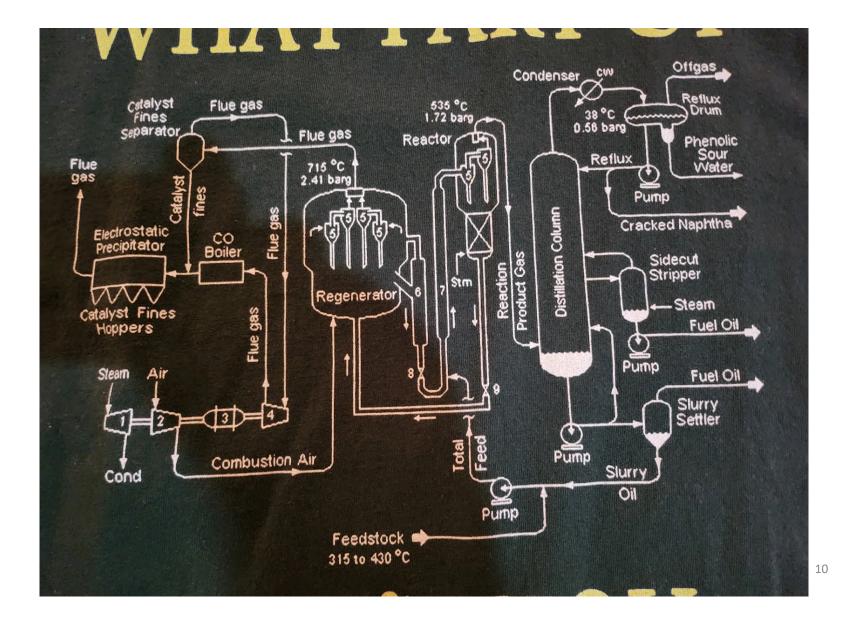
- P = Parafinic (Propane C-C)
- O = Olifinic (Propylene C=C)
- N = Napthinic (Cyclohexane C6H12)
- A = Aromatic (Benzene C6H6, BTX, etc.)


OCTANE DEFINITION

- 0 = n-Heptane 100 = i-Octane
- RON (Research Octane Number) Highway
- MON (Motor Octane Number) 900 RPM City Streets


Units Block Diagram #1

Units Block Diagram #2



Fluid Catalytic Cracker

Fluid Cat Cracker

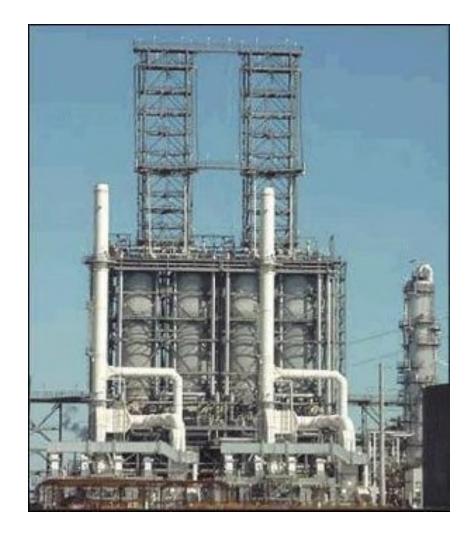
- Developed in WWII Backbone of Profitability for an Oil Refinery
- GasOil Feed Volume Gain 5 to 10%
- Fluidized Zeolite Silica-Alumnia Catalyst
- 1210 deg F Gaseous Phase Hexmetal and Troweled Refractory
- 70% Conversion to Gasoline 87 Octane
- Reactor (Riser Now) and Regenerator
- Distillation
- Burn off Carbon Laydown on Catalyst in Regenerator
- Slide Gate Valve Critical Wear / Reliability Like Sand Blasting
- Cyclones Critical Wear
- Electrostatic Precipitator

Alkylation Unit

- IsoButane + Propylene -> IsoHeptane
- IsoButane + Butylene -> IsoOctane (Alkylate) (Most of it)
- Catalysts:
 - H2SO4 Higher Capital Cost
 - HF More Special Handling / Danger (Phillips Developed)
- Results in high octane: IsoOctane is 100 Octane
 - AvGas Aviation Gasoline WWII (Higher Compression Piston Engines)
 - MoGas Motor Gasoline Blending Component

Hydrotreaters

- NHT Naphtha Hydrotreater
- DHT Distillate Hydrotreater
- C=S + 2H2 \rightarrow C=H2 + H2S
- Mostly all feeds from Atmosphere Distillation Unit
- Add H2, over a Nickel Cobalt Catalyst



Catalytic Reformer

- Takes Paraffinic (Straight Run, Low Octane)
- Makes Cyclic Naphthenic and Aromatic
- Platinum Catalyst (Until Catalytic Converters, was largest use in the world.)
- Gives up Hydrogen
- Increases Octane (harder to Pre-Combust)
- E.g. Toluene has a 121 Octane
- Overall, 92 Octane

Delayed Coker - #1

- "A 19 year old's perspective"
- Bottom of the Barrel Bottom of Vacuum Flasher
- Some Very Heavy GasOil
- Cracking Furnace 1250 F High Velocity to Delayed Coking
- Coke Drum Deposit Coke
- Then, Liquid Products to Fractionation

Delayed Coker - #2

- The Coke Drums
- Two (or Four) Drums one on stream, other being cut
 - Cool Down, Steam Out (Purge)
 - De-Head If you do too fast before fully steamed out You become a torch
 - Cut Coke with Drill String, then 5,000 psig water jet, spiraling up
 - Coke Drops into a sluiceway. Either Scooped out or into Rail Cars.
 - Coke used with Coal in Power Plants, etc.
 - Needle Coke Electrodes

Hydrogen Plant (Steam Methane Reformer)

- Still Short of Hydrogen
- CH4 + H2O -> 2H2 + CO2

Glycol - Water Removal

- Removal of Water from Fuel Gas
- Absorber / Stripper
- Sour Water Stripper NH3 from Water

Amine – H2S Removal from Fuel Gas

- Originally MEA (Mono-Ethanol Amine)
 - Products of Degradation
- Today Mostly DEA (Di-Ethanol Amine)
 - Absorber/ Stripper
- 70% H2S off the Stripper
- Sour Water Stripper H2S Removal/ NH3 Removal

Sulfur Recovery #1

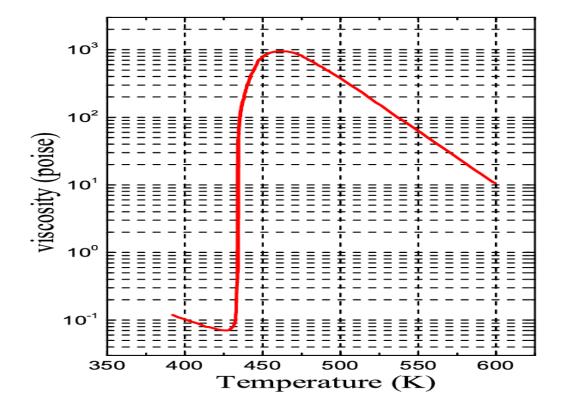
- Claus Process
 - 1883 Dr. Claus Developed
 - H2S + 3/2 O2 → SO2 + H2O
 - Combust 1/3 of H2S (O2 feed controlled)
 - Bypass 2/3 of H2S around burner
 - 2 H2S + SO2 \rightarrow 3 S (elemental) + 2 H2O (Alumina III catalyst)
 - Problem COS, CS2, and NH3 left un-combusted

Sulfur Recovery #2

- Modified Claus (Most Popular)
 - All feed (usually 70% H2S) through burner
 - H2S + 3/2 O2 → SO2 + H2O
 - Combust 1/3 of H2S (based on analyzer after the burner)
 - 2 H2S + SO2 \rightarrow 3 S (elemental) + 2 H2O (Alumina III catalyst)
 - COS and CS2 and NH3 combusted with 1 sec. residence time in burner
 - THEN Cooled to condense S (elemental) (65% conversion)
 - Stage 2 Reheat, Catalyst Bed, Condense S (elemental) (90% conversion)
 - Stage 3 Repeat (95% conversion)
 - Diminishing Return Not Good enough for Environmental

Sulfur Recovery #3 – Tail Gas Unit

- SCOT (Shell Claus Offgas Treater)
 - The 1/3 Combusted SO2 Reduced over a Catalyst, with H2, to H2S
 - H2S absorbed in MDEA Methyl Di Ethanol Amine
 - Methyl radical Sterically Hinders the CO2, now present, from Absorption
 - CO2 too big
 - H2S is smaller, okay
 - H2S Stripped, returned to head of Modified Claus
 - Gets H2S down to <10 ppm
 - Tail Gas to incinerator, with fuel gas to get to SO2


Sulfur Recovery #4 - Issues

- H2S Concentrations in Air
 - Below 0.5 PPM not detectable
 - Above 10 PPM not detectable (cuts out sense of smell)
 - Above 25 PPM fatal

Sulfur Recovery #5 - Issues

- Liquid Sulfur Tight Temperature 50 F Window (Throughout)
 - Too Cool Solid
 - Too Warm Polymerizes "Sulfcrete"
- SO2 equilibrium with SO3
- With H2O present H2SO4 in highly corrosive percentages
 - Eats through Carbon Steel
 - Eats through 304 Stainless Steel (3x cost of C.S.)
 - Eats through 316 Stainless Steel (5x cost of C.S.)
 - Alloy 20 (Carpenter Technologies) is Good (10x cost of C.S.)

Sulfur Viscosity vs. Temperature

Other Sulfur Recovery #6 - Technologies

- Stretford / Bevon Stretford
 - Vanadium Penta-Oxide
 - "Frothy Removal"
 - Oxidation / Reduction Process
 - Limited to smaller volumes
- Iron Sponge
 - "Rusty Wood Chips"
 - Non-regenerative Dispose of Rusty Wood Chips
 - Limited to smaller volumes
- Cold Bed Adsorption (CBA)
 - Good for Gas, not Oil Refineries
 - Large Volumes
 - Not Used Much
- Others

Not Discussed

- Gasoline Blending
- Asphalt Blending
- Utilities
 - Power
 - Steam
 - Cooling Water
 - Process Water
- Waste Water Treatment
- Fire Protection
- Etc.