

Developments in Lithium-Ion Battery Recycling Processes

Bryan Tiedemann, Ph.D.

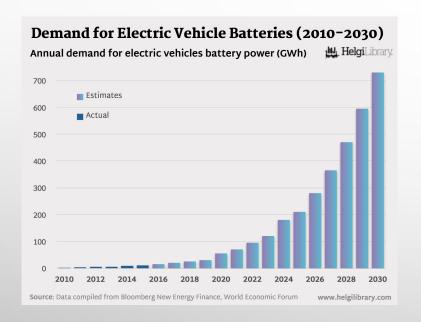
Shiloh Scientific Consulting, LLC

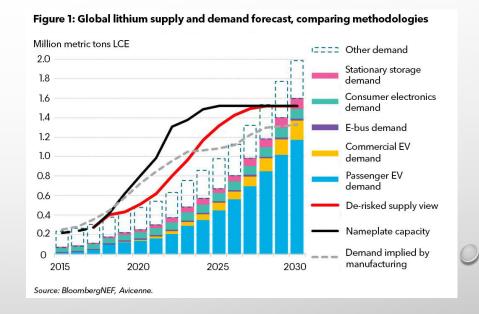
January 24, 2003

About the speaker

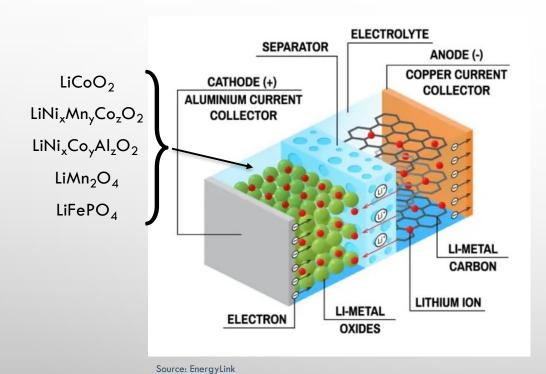
- Originally from California
- BS in Chemical Engineering (Caltech, 2002)
 - Research focused on solar energy conversion
- Ph.D. in Chemistry (UC Berkeley, 2007)
 - · Focus on synthetic and inorganic chemistry
- Moved to Texas in 2007

- Work experience since 2007:
 - Matheson Tri-Gas
 - ExxonMobil Chemical Company
 - Shell Chemicals
 - Consultant for Earthineering
 - Momentum Technologies
 - Independent consultant (present)




Overview

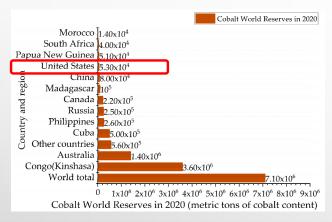
- EV market conditions and lithium-ion battery demand
- What is a LIB and how are they made
- Mechanical shredding and black mass separation
- Pyrometallurgy
- Hydrometallurgy and solvent extraction
- Membrane-supported solvent extraction
- Summary

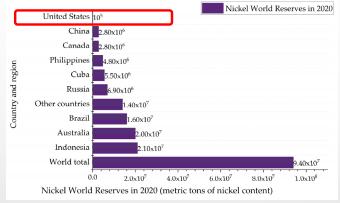

Electric vehicles are here Li-ion battery demand is ramping up

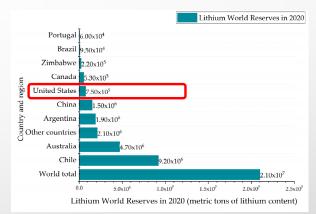
Lithium-ion battery composition

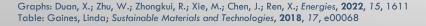
- Graphite anode
- Various cathode materials
- Organic electrolyte
- Separator
- Copper and aluminum current collectors
- Plastic and steel from casing

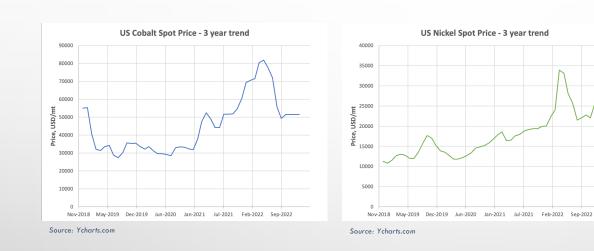
Electrochemical Series – Standard Reduction Potentials

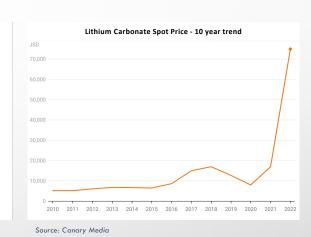

$$\Delta G^{\circ} = -nFE^{\circ}$$

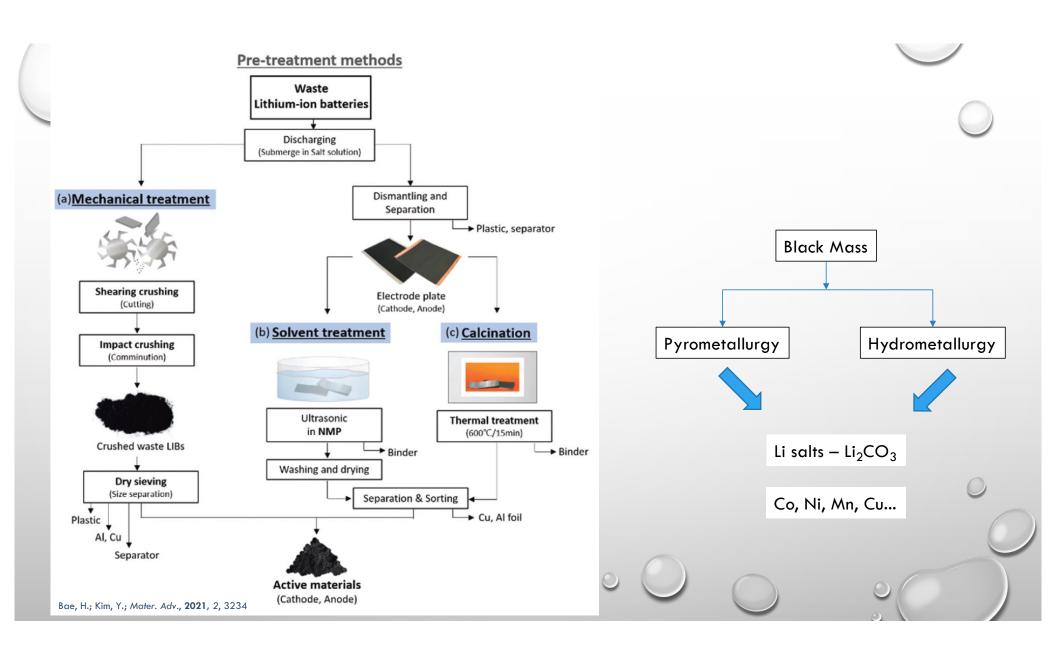

	E° (V vs. SCE)		E° (V vs. SCE)
$\mathrm{F_2}+2\mathrm{e^-}\longrightarrow2\mathrm{F^-}$	2.87	$2\mathrm{H^+}+2\mathrm{e^-}\longrightarrow\mathrm{H}_2$	0
$\mathrm{Co}^{3+} + \mathrm{e}^{-} \longrightarrow \mathrm{Co}^{2+}$	1.81	$\mathrm{Pb}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Pb}$	-0.13
$Au^+ + e^- \longrightarrow Au$	1.69	$\operatorname{Sn}^{2+} + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}$	-0.14
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	1.61	$\operatorname{In}^{3+} + 3 \operatorname{e}^{-} \longrightarrow \operatorname{In}$	-0.34
$\mathrm{Br}_2 + 2\mathrm{e}^- \longrightarrow 2\mathrm{Br}^-$	1.09	$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Fe}$	-0.44
$Ag^+ + e^- \longrightarrow Ag$	0.80	$\mathrm{Zn}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Zn}$	-0.76
$\mathrm{Cu}^{2+}+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}$	0.34	$V^{2+} + 2e^{-} \longrightarrow V$	-1.19
$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$	0.22	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$\mathrm{Sn}^{4+} + 2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}$	0.15	\longrightarrow Li ⁺ + e ⁻ \longrightarrow Li	-3.05


Uneven global distribution of resources

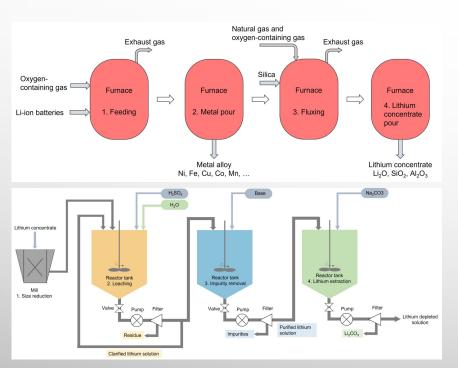

US vulnerable to supply chain disruptions for LIB critical elements



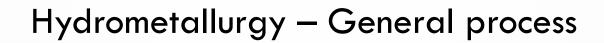

Projected cumulative world battery material demand to 2025 (1000 tons).					
Element	Projecto	USGS Reserves			
	If all NMC is	If all NMC is high-Co			
	low-Co (811)	(111)			
Lithium	230	230	16,000		
Cobalt	790	910	7,100		
Nickel	580	340	74,000		

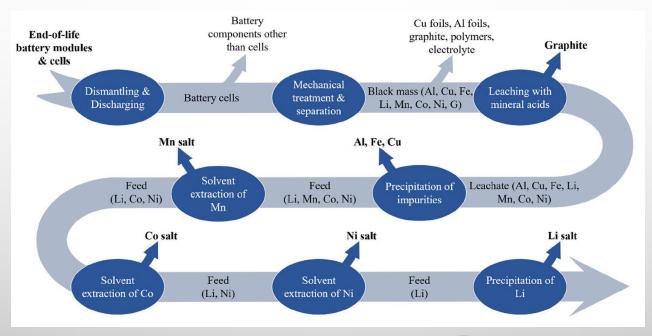


EV battery demand driving up prices for LIB materials LIB recycling can be profitable



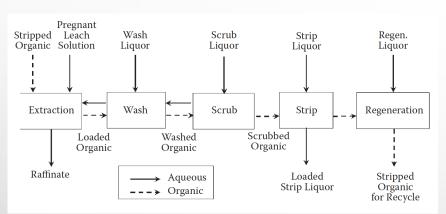
- LIB recycling can be quite profitable with the right process technology
- Several recent startups emerged in the US and Canada
 - Top 5 by funding: Ascend Elements, Redwood Materials, Li-Cycle, Aqua Metals and Lithion Recycling
 - Each company uses proprietary process technologies



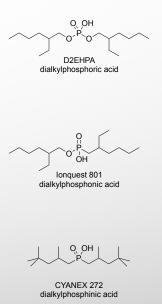


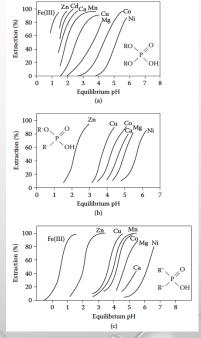
Pyrometallurgy – General process

- Organics burned off in furnace at ~1500 °C
 - Plastics, electrolytes, graphite removed
 - Forms liquid metal and solid Li oxide phases
- Liquid metal poured off solid Li concentrates
 - · Metallic elements further separated by melting point
- Silica flux added to Li concentrates
 - Heated to flux/fluidize solids before pouring Li concentrates out from furnace
- Li salts extracted from crushed Li concentrate
 - Li⁺ leached from concentrate with aqueous acid
 - Extract neutralized with base to precipitate impurities
 - Sodium carbonate added to precipitate $\mathrm{Li_2CO_3}$

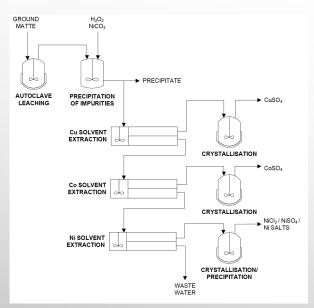


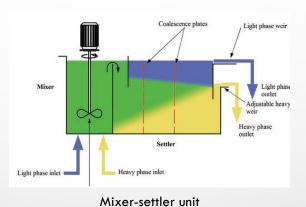
Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S.; Adv. Energy Mat., 2022, 12, 2102917

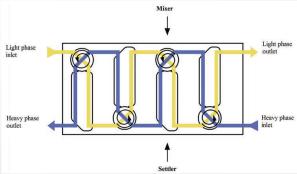



Principles of Solvent Extraction Organophosphorus acids

$$H \stackrel{A}{\underset{A}{\longrightarrow}} Co \stackrel{A}{\underset{A}{\longrightarrow}} H, \text{ where } H \stackrel{A}{\underset{A}{\longrightarrow}} H = H \stackrel{R}{\underset{O}{\longrightarrow}} P \stackrel{R}{\underset{O}{\longrightarrow}} H$$

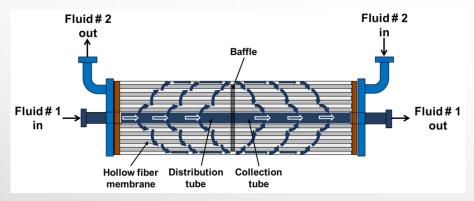

$$H \stackrel{A}{\underset{A}{\longrightarrow}} M \stackrel{H_2A_2}{\underset{H_2O}{\longrightarrow}} H \stackrel{H_2A_2}{\underset{H_2O}{\longrightarrow}} H \stackrel{H_2A_2}{\underset{H_2O}{\longrightarrow}} H \stackrel{H_2A_2}{\underset{H_2O}{\longrightarrow}} H \stackrel{H_2A_2}{\underset{H_2A_2}{\longrightarrow}} H \stackrel{H_2A_$$

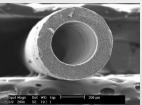



Equipment for Hydrometallurgy and Solvent Extraction

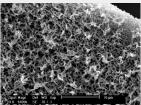
Simplified flowsheet of Nickelhütte Aue GmbH Brückner, L.; Frank, J.; Elwert, T.; Metals, **2020**, *10*, 1107

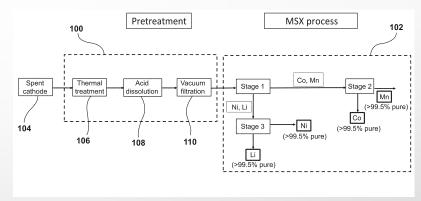
De Deitrich mixer-settler


Countercurrent bank of mixer-settler stages


Membrane Supported Extraction

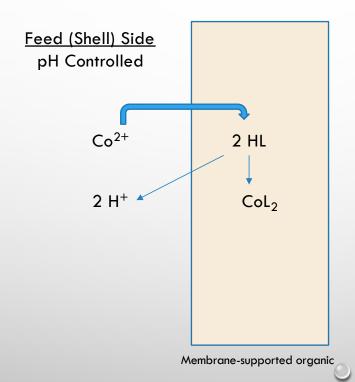
Overview




Thousands of hollow fibers in a module

Fiber cross-section (scale: 200 microns)

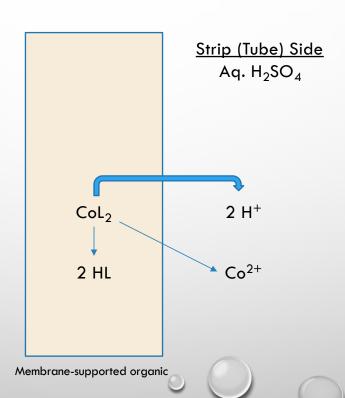
Surface of porous fiber (scale: 10 microns)

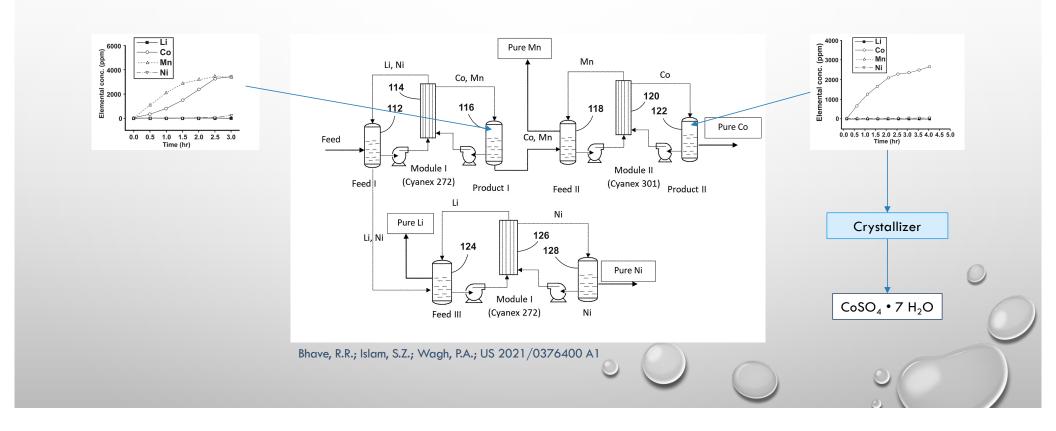

Bhave, R.R.; Islam, S.Z.; Wagh, P.A.; US 2021/0376400 A1

- Hydrophobic membrane pores are loaded with organic extractants
- Extraction and stripping steps occur in single device
- Modular design potentially useful for smaller scales

Membrane Supported Extraction

Mass transport across membrane


Strip (Tube) Side Aq. H₂SO₄


Membrane Supported Extraction

Mass transport across membrane

Feed (Shell) Side pH Controlled

ORNL Membrane Supported Extraction Process Batch Extraction Stages and Operation

Summary

- Lithium-ion battery recycling will be a key part of the critical materials supply chain as vehicles continue to be electrified at an increasing rate going forward
- After discharge, disassembly and sorting, lithium-ion batteries can be recycled using a variety of innovative technologies
 - Largely based on pyrometallurgy or hydrometallurgy processes adapted from the mining industry
 - Various startup companies seeking to take advantage of high commodity prices
- Chemical engineers should remain deeply involved in commercializing green technologies