

Effective Troubleshooting of Shell-and-Tube Heat Exchangers Using CFD

Kevin J. Farrell 174 - Design, Optimization of Heat Exchangers Topical 11: 2nd Topical Conference on Heat Exchangers

HTRL

What exactly is CFD?

- Continuous frustrations and divergence
- Colors for directors
- Catastrophic failures and disappointments
- Compelling fluent disillusionment
- Confusion, flailing, and denial

Content courtesy of Prof. Wayne Strasser, Liberty University

Hierarchy of fluid flow models solved by CFD

Direct Numerical Simulation (DNS)

Large Eddy Simulation (LES)

Reynolds-Averaged Navier-Stokes (RANS)

Euler

Potential

Viewing RANS equation set conveys power of CFD

• Continuity

 $\frac{D\rho}{Dt} + \rho \vec{\nabla} \cdot \vec{V} = 0$

• Momentum

$$\rho \frac{D\vec{V}}{Dt} = \vec{f}_{vol} - \vec{\nabla}p + \vec{\nabla} \cdot \vec{\tau} \qquad = \begin{bmatrix} 0 & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & 0 & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{bmatrix}$$

• Energy

$$\rho \frac{Du}{Dt} = -\vec{\nabla} \cdot \vec{q} - P(\vec{\nabla} \cdot \vec{V}) + \Phi$$

• Constitutive relations (Stress-velocity gradient equations)

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \qquad \tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \qquad \tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

(C) Heat Transfer Research, Inc. All rights reserved

• Turbulence closure (Two-equation model)

$$\frac{D(\rho\kappa)}{Dt} = \vec{\nabla} \cdot \left(\mu + \frac{\mu_t}{\sigma_\kappa}\right) \vec{\nabla} \kappa + G_\kappa + G_b - \rho \varepsilon_t$$
$$\frac{D(\rho\varepsilon_t)}{Dt} = \vec{\nabla} \cdot \left(\mu + \frac{\mu_t}{\sigma_\varepsilon}\right) \vec{\nabla} \varepsilon_t - C_{2\varepsilon} \rho \frac{\varepsilon_t^2}{\kappa}$$
$$+ C_{1\varepsilon} \frac{\varepsilon_t}{\kappa} \left(G_\kappa + G_b\right)$$

• Property relations EoS, $\rho(T)$, $\mu(T)$, $C_p(T)$, $k_t(T)$

Does CFD compute drag and heat transfer from first principles?

- For laminar flows, **YES**
- For turbulent flows, two options
 - 1. Fine mesh spacing must be such that $y^+ \le 1$ for wall adjacent cell, **YES**
 - Coarser mesh with "universal" character of boundary layer captured by wall functions YES, with some empiricism mixed in
 - Centroid of first grid cell located in overlap layer or "log-law" region
 - Popular "scalable" options overcome this limitation
 - Usually wall functions are fine for engineering calculations

Porous media can simplify CFD models

- Can be used for single- and multiphase
- 2D: Perforated plates and distributors
- 3D: Packed beds and tube banks
- Resistance determined *a priori* via j- and ffactor relationships vs. pitch ratio and Re
- Heat transfer represented with or without thermal equilibrium between medium and fluid flow

Is distribution plate beneficial?

Applications to Kettle Reboilers

Vapor escape lanes can increase recirculation

HTRI

Vaporization rates in porous volumes specified according to corresponding *Xist*[®] increment

Value synergy using CFD and *Xist* together

Void fraction on center plane $t^* = 0$ (initial condition)

Entrainment vs. froth height relationship in *Xist* is in agreement with Eulerian multiphase CFD results

Froth level, mm

Eulerian-Lagrangian approaches to entrainment are straightforward, but boundary conditions are elusive

Extract velocity profiles from simulation for accurate vibration analyses

Applications to High Effectiveness X Shells

Example: Underperforming BXU heating gas with steam

High-effectiveness BXU gas heater underperformed

HTRI

B-stream: 70% instead of design value of 96%

Non-idealities of full support plate with windows

How does performance impact the carbon footprint of a heat exchanger?

When heat is exchanged, availability reduces

- Hot stream always gives up more availability than acquired by cold stream
- Product of availability destruction and mass of CO₂ per unit energy = carbon footprint

$$\Delta a = (h_2 - h_1) - T_0 (s_2 - s_1) + \frac{V_2^2 - V_1^2}{2} + g (z_2 - z_1)$$

HTRI

Example: Gas cooler shows bypass stream across top of bundle

23

Summary

- CFD simulation can provide timely, actionable insights into heat exchanger performance issues resulting from
 - maldistribution
 - excess vibration
 - bypass
 - underperforming enhancements
 - fouling
- "Right-sized" approach is key for troubleshooting
- Validation data are always needed

kevin.farrell@htri.net 1.979.690.5050

