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What exactly is CFD?

• Continuous frustrations and 
divergence

• Colors for directors

• Catastrophic failures and 
disappointments

• Compelling fluent 
disillusionment

• Confusion, flailing, and denial
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Hierarchy of fluid flow models solved by CFD
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Direct Numerical Simulation (DNS)

Large Eddy Simulation (LES)

Euler

Reynolds-Averaged Navier-Stokes (RANS)

Potential



Viewing RANS equation set conveys power of CFD
• Continuity

• Momentum

• Energy

• Constitutive relations 
(Stress-velocity gradient equations)

• Turbulence closure 
(Two-equation model)

• Property relations 
EoS, r (T), m (T), Cp (T), kt (T)
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Does CFD compute drag and heat transfer from 
first principles?

• For laminar flows, YES

• For turbulent flows, two options

1. Fine mesh spacing must be such that            
for wall adjacent cell, YES

2. Coarser mesh with “universal” character of 
boundary layer captured by wall functions  

• Centroid of first grid cell located in overlap layer or 
“log-law” region

• Popular “scalable” options overcome this limitation

• Usually wall functions are fine for engineering 
calculations
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Porous media can simplify CFD models

• Can be used for single- and multiphase

• 2D: Perforated plates and distributors

• 3D: Packed beds and tube banks

• Resistance determined a priori via j- and f-
factor relationships vs. pitch ratio and Re

• Heat transfer represented with or without 
thermal equilibrium between medium and 
fluid flow
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Is distribution plate beneficial?
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Applications to Kettle Reboilers
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Vapor escape lanes can increase recirculation 
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Section 1 Section 2

Vaporization rates in porous volumes specified 
according to corresponding Xist® increment
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Value synergy using CFD and Xist together
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Void fraction on center plane t* = 0 (initial condition)
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Volume fraction of vapor
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2.89 kg/s

2.48 kg/s

Droplet diameter (mm)

Eulerian-Lagrangian approaches to entrainment are 
straightforward, but boundary conditions are elusive
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Extract velocity profiles from simulation for 
accurate vibration analyses
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Applications to High Effectiveness X Shells
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High-effectiveness BXU gas heater underperformed

0 2 4 61
Number of transfer units, NTU

Ef
fe

ct
iv

e
n

e
ss

, 
0.0

0.2

0.4

0.6

0.8

1.0

Design conditions, Xist

53

 1 exp NTU 

Field experience at turndown

Design conditions, CFD

Turndown, CFD

© Heat Transfer Research, Inc. All rights reserved. 



B-stream: 70% instead of design value of 96%
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Non-idealities of full support plate with windows

Velocity 
magnitude, m/s Temperature, K
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How does performance impact the carbon 
footprint of a heat exchanger?
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When heat is exchanged, 
availability reduces
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• Hot stream always gives up more 
availability than acquired by 
cold stream 

• Product of availability 
destruction and mass of CO2 per 
unit energy = carbon footprint
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Example: Gas cooler shows bypass stream across 
top of bundle
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Inverted “U” and “T” baffles block bypass and 
improve performance
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Saves 170 tonnes of CO2 emissions
per year



Summary

• CFD simulation can provide timely, actionable insights into heat 
exchanger performance issues resulting from
• maldistribution

• excess vibration

• bypass

• underperforming enhancements

• fouling

• “Right-sized” approach is key for troubleshooting

• Validation data are always needed
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