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What exactly is CFD?

Post-processing

 Continuous frustrations and Processing
divergence

* Colors for directors Pre-processing

e Catastrophic failures and
disappointments

e Compelling fluent
disillusionment

e Confusion, flailing, and denial

Content courtesy of Prof. Wayne Strasser, Liberty University
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Hierarchy of fluid flow models solved by CFD

Direct Numerical Simulation (DNS)

Large Eddy Simulation (LES)

Reynolds-Averaged Navier-Stokes (RANS)

Euler

Potential
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Viewing RANS equation set conveys power of CFD

Continuity
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Constitutive relations
(Stress-velocity gradient equations)
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* Turbulence closure
(Two-equation model)
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* Property relations
EoS, p (T), £ (T), C, (T), k. (T)
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Does CFD compute drag and heat transfer from

first principles? e —TTTT ;
Viscous  Buffer Overlap
* For laminar flows, YES o5 | Sublayer™— layer ayer

* For turbulent flows, two options

1. Fine mesh spacing must be such that
y* <1 for wall adjacent cell, YES E

2. Coarser mesh with “universal” character of
boundary layer captured by wall functions /J{
YES, with some empiricism mixed in

* Centroid of first grid cell located in overlap layer or
“log-law” region

20 1

15

Outer region

* Popular “scalable” options overcome this limitation

* Usually wall functions are fine for engineering 5 30 300
calculations o

1000 10000
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Porous media can simplity CFD models

* Can be used for single- and multiphase

* 2D: Perforated plates and distributors
* 3D: Packed beds and tube banks |
* Resistance determined a priori via j- and f-

factor relationships vs. pitch ratio and Re Eae
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* Heat transfer represented with or without
thermal equilibrium between medium and
Ganv)

fluid flow
Cm9,
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s distribution plate beneficial?
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Applications to Kettle Reboilers
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Vapor escape lanes can increase recirculation

Void fraction
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Vaporization rates in porous volumes specified
according to corresponding Xist® increment

1.00
0.95
0.90
0.85

0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
N 0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

| I I m © Heat Transfer Research, Inc. All rights reserved.




Value synergy using CFD and Xist together

| I I m © Heat Transfer Research, Inc. All rights reserved.



Void fraction on center plane t* = O (initial condition)

Volume fraction of vapor
0.0 0.1 0.2z 03 04 0.5 0.6 0.7 02 ne 10
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Entrainment vs. froth height relationship in Xist is
in agreement with Eulerian multiphase CFD results

Bundle height
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Eulerian-Lagrangian approaches to entrainment are
straightforward, but boundary conditions are elusive

Droplet diameter, um

: . : 40. 50. 60.
™~ D I
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H l I i 14
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Extract velocity profiles from simulation for
accurate vibration analyses
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Applications to High Effectiveness X Shells
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Example: Underperform
with steam
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High-effectiveness BXU gas heater underperformed

1.0 ,

Design conditions, Xist

Design conditions, CFD -

Effectiveness, ¢

0 1 2 3 4 5 6
Number of transfer units, NTU
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B-stream: 70% instead of design value of 96%

Velocity
magnitude, m/s 25
12 . Perfect distribution, Xist
S ool CFD
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Non-idealities of full support plate with windows

Velocity
- magnitude, m/s

Temperature, K

17 522

14 505

487

470
452
435
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How does performance impact the carbon
footprint of a heat exchanger?

| ITM © Heat Transfer Research, Inc. All rights reserved.

21



When heat is exchanged,
availability reduces

\ HOt’ ) >

* Hot stream always gives up more - Cold,ou
availability than acquired by
cold stream
* Product of availability
destruction and mass of CO, per
unit energy = carbon footprint

Cold, in

2 2
Aa=(h,—h)-T,(s, —sl)+V2 Vi

+g(22_21)

S

Pseudo compression/ pumping from dead state for trade-off studies !
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Example: Gas cooler shows bypass stream across
top of bundle

MFAInletTemp: 250.00 (C)
Inflow of Vapor: 5.00 (kg/s)

Tube Wall Temp: 80.00 (C)

DPt: 151602 (Pa)

Temperature (C)
80 100 120 140 160 180 200 220 240 260

Effectiveness: 0.897

MFAExitTemp: 97.47 (C)

© Heat Transfer Research, Inc. All rights reserved.
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5.0 (kg/s)

HTRL
1184728

:250.00 (C)
DPt

0.913

Inflow of Vapor
MFAInletTemp
Temperature (C)
100 120 140 160 180 200 220 240
Effectiveness:

80.00 (C)

80

.

Tube Wall Temp
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94.72 (C)

, emissions

formance

MFAExitTemp

l

Saves 170 tonnes of CO
per year

Inverted “U” and “T” baffles block bypass and

Improve per




summary

* CFD simulation can provide timely, actionable insights into heat
exchanger performance issues resulting from

* maldistribution Design

* excess vibration software

* bypass

e underperforming enhancements

* fouling Testing Analysis

* “Right-sized” approach is key for troubleshooting
* Validation data are always needed
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