Clean Nuclear Power Part 1: Fuel Cycle

Ara Barsamian

Refinery Automation Institute, LLC

jabarsa@refautom.com Tel: (973)-644-2270

Safety and Logistics

- Please familiarize yourselves with the nearest exits
- In case of emergency, WALK, DO NOT RUN!

About the Speaker: Ara Barsamian

Godiva Zero Power Reactor

- BS, MS (Engineering)
- Member AIChE, ASTM, ISA, ILTA
- Exxon Research & Engineering:
 - Mainly responsible for computerized fuels production world-wide:
 - Gasoline, Diesel, Bunker Fuel
 - Consultant to Jersey Nuclear on AVLIS and nuclear explosives for stimulation of depleted oil, fields
- 3X Corporation: President, ABB Simcon: VP, Refinery Automation,
- RAI: blending consultant

Why Nuclear Power?

High **Standards** of Living Require MORE **ENERGY**

Energy fuels human development 2014 U.N. Human Development Index Norway 1.0 United States 0.8 Bangladesh India 0.6 Yemen Nigeria 0.4 0.2 Log Scale 0 10 100 1.000 10,000 2014 energy use per capita Thousand BTU per person per day

Why Nuclear Power?

- Pro's
 - -No GHG, SOX, NOX, VOC
 - Very cheap, predictable costInexhaustible (for millenia)
- Con's

-Politics, high construction costs (US, EU), disposition of waste

Basis of Nuclear Energy

-Splitting Atoms=Unbalanced Binding Energy=Mass Defect=Energy=mc²

Basis of Nuclear Energy

 Fission results in 2 or more neutrons, which in turn cause more fissions, making possible an exponential (divergent) chain reaction, releasing more and more (kinetic) energy

Chain Reaction Needs a Critical Mass

A self-sustaining sequence of fissions needs a minimum mass for the initial neutrons to create new fissions: depends on speed of neutrons, shape of mass, type of fissile material

Figure 1.48. Effect of increased mass of fissionable material in reducing the proportion of

 Fission process (by neutrons) needs fissionable materials

-Typically ACTINIDES (U, Th, Pu)

Classes of Actinides

-Fissionable (only by hi speed neutrons)

-Fissile (by neutrons of all energies)

- Best Material has high fission crosssection (ease of splitting)
 - -Typically U235, and Pu239
 - U238 (common isotope) needs high energy (fast) neutrons; hence not good for power reactors
- U235 is only 0.7% of natural Uranium (U238), hence need for enrichment in isotope 235

- Can we use natural Uranium (99% U238, 0.7% U235), for power reactors?
 - Yes, if we use "moderators" to slow down fission neutrons so they can fission the tiny amount of U235 (0.7%) in the natural Uranium
 - Original reactors (Fermi's Pile) and Hanford
 Plutonium reactors did just that
 - Used graphite as moderators
 - Disadvantage: they are huge, and have poor efficiency

- Light Water Reactor (LWR) more efficient than moderated reactors
 - Do not use moderator like Graphite or Heavy Water to slow down neutrons
 - -fuel is natural Uranium (U238), enriched to ~5% U235
 - Advantage:
 - they are smaller, and have good efficiency
 - Produce less Plutonium for weapons

Nuclear Fuel Cycle

Fig. 1. The nuclear fuel cycle.

Ore to Yellowcake to UF6 Gas

Ore: Pitchblende

Yellowcake: U3O8

UF6 Gas

Enrichment Methods for U235

Based on	Examples			
Diffusion in a pressure gradient	Gas centrifuge ^a Separation nozzle Vortex tube			
Diffusion principles	Gaseous diffusion ^a Mass diffusion Thermal diffusion			
Phase equilibrium principles	Distillation			
Chemical equilibrium principles	Chemical exchange			
	Ion exchange			
Photo excitation principles	Atomic vapor laser isotope separation (AVLIS)			
	Molecular laser isotope separation (MLIS)			
Electromagnetic principles	Plasma separation process (PSP)			
	Electromagnetic isotope separation (EMIS)			
	Plasma centrifuge			

1. Enrichment by Gaseous Diffusion

2. Gas Ultra Centrifuge

photo : Siamak Ebrahimi

Gas Ultra Centrifuges

	Rotor	Dia cm	Height m	SWU kg/yr	
P-1	aluminum	10	2	> 2	
P-2	maraging steel	15	1	> 5	
TC10	maraging steel	15	3.2	> 20	
TC12	carbon fiber	20	3	40	
AC-100	carbon fiber	60	12	330	

Enrichment process	Separation factor	Throughput	Specific inventory (kg/U/SWU/year)	Specific energy consumption (kWh/SWU)	Capital costs
Gaseous diffusion	1.004	High	0.1–0.3	2400	Reference
Gas centrifuge	>1.3	Low	-0.0005	100	Higher
Aerodynamic					
Vortex tube	1.03	High	0.003	3500	Comparable
—Separation nozzle	1.015	High	0.002	2500-3500	Comparable
Chemical exchange	1.0026	High	1.1	360 ^a	Lower
Ion exchange	1.001	High	0.1-0.4	140 ^a	Lower
Laser					
Molecular	2-6	Moderate	Low	150	Lower
 Atomic vapor 	2–6	Moderate	Low	150	Lower
Electromagnetic isotope separation (EMIS)	~30	Very low	N/A	High	Much higher

Table 3. Comparison of the enrichment processes

3.1 AVLIS (atomic vapor laser isotope separation)

In the laser system used for the LIS uranium enrichment process (right), electrons from the ²³⁵U atoms are separated (left), leaving positively charged ²³⁵U ions that can be easily collected for use.

3.1 Laser – AVLIS

3.2 SILEX/Molecular Isotope Separation

Reactor Fuel Fabrication

Steps

 Convert Enriched U235 to UO2 (pellets)
 Encase pellets in a sheath of Zirconium Alloy (old reactors had Aluminum sheathing)

Reactor Fuel Fabrication

Steps

 Convert Enriched U235 to UO2 (pellets)
 Encase pellets in a sheath of Zirconium Alloy (old reactors had Aluminum sheathing)

(a) Fuel Rod Inspection, no shielding

Burning Fuel in a Power Reactor

Spent Fuel Reprocessing

- Most reactors fuel burn-up limited
 - Poison build-up (e.g. Xe) slows/stops fission reaction (absorbs neutrons!!!)
- Most U235 still intact and can be re-used
- U238 in fuel absorbs neutrons and becomes Plutonium 239, also fissile
 - supports chain reaction and produces power
- Need to Recover \$\$\$ U235 and Pu239

Spent Fuel Reprocessing

Uranium Reprocessing

Source: U.S. Department of Energy.

Figure 1: Schematic description of standard PUREX flowsheet

Megatons to Megawatts!!!

 End of Cold War= Tens of Thousands of Nuclear Weapons Cores of HEU235 and Pu239 became SURPLUS!!!

Megatons to Megawatts!!!

- Surplus Cores of HEU235 and Pu239
 - HEU235 cores converted to UO2 Oxide, downblended from 94% enrichment with U238 to make ~5% U235, and then pressed into fuel pellets for LWR
 - Pu239 cores of ~94% enrichment converted to PuO2 Oxide, and them mixed with UO2
 - Result: MOX (mixed Oxide of U235~93% and Pu239~7%), pressed into ceramic pellets
 - About 30 reactors in EU use MOX

- Concerns about proliferation (recover Pu239!)

Spent Fuel Waste Handling

- Issue: Spent Fuel Waste Radioactivity
 - Short lived fission products: Cs, La, Xe, etc.
 - Intensely radioactive, decays to half every 7 hrs
 - Decay Heat cooling ponds before reprocessing or long terms storage
 - Long lived fuel: low level radioactivity
 - Pu239 24,000 yrs, Natural U- millions of years
- No national strategy what to do

Spent Fuel Waste Handling

- Currently stored in pools or dry storage at the 60+ nuclear reactor sites in the U.S.
- Generated at approximate rate of 2100 MTHM/yr
- Slated for direct disposal into Yucca Mountain geologic repository
 - Yucca Mountain is not licensed or open at this time, spent fuel inventory will exceed legislated capacity before it is opened

Summary

Plentiful Nuclear Fuel Available for Millenia

- Natural U for (Heavy Water or Graphite) HWR
- U enriched to ~5% U235 for LWR
- MOX of Pu239 and HEU235 for fast reactors
- New
 - Ultra-Safe Reactor Technology, e.g. pebble-bed reactor
 - Modular nuclear reactor for predictable cost and performance
- Politics and ignorant public
 - still fearful of nuclear power (80+% France's Electricity, 0 accidents)