

SAFETY LAYERS AND LAYER OF PROTECTION ANALYSIS (LOPA)

North Jersey Section AIChE September 2020

WHO AM I?

- Peter Sibilski, P.E., CEM, FAIChE
- Plant Manager, Pharmetic Manufacturing Co., LLC
- B.S., Chemical Engineering NJIT
- MBA, Technology Management University of Phoenix
- Work experience includes:
 - Diamond Shamrock specialty chemicals
 - Occidental Chemical specialty chemicals
 - Henkel Chemical specialty chemicals
 - Olin Hunt microelectronics chemicals
 - El Associates A/E consulting
 - BOC Gases industrial gases
 - Schering-Plough pharmaceuticals
 - ALZO International, Inc. specialty chemicals

Information presented on these slides was obtained (with permission) from:

- Consider the Role of Safety Layers in the Bhopal Disaster – Ronald J. Willey, P.E., CEP Magazine, December 2014
- ...as well as over 30 years of experience in the chemical process industry!

BHOPAL DISASTER

THE PLANT

- Owned by Union Carbide India, Ltd (UCIL)
 - Joint venture of UC and a group of Indian government-controlled institutions
 - Located about 2 miles north of Bhopal railway station
- Agricultural Products Division of UCIL operated the plant
 - Manufactured fungicides, miticides, herbicides and insecticides
 - Accounted for just over 8% of UCIL sales
- Opened (new) in 1970 initially only blending pesticides
- Backward integrated over time, with methyl isocyanate (MIC) production beginning in 1980
- Capacity was 5,250 metric tons (~ 11.6 million lbs) MIC / year
- Bunker constructed, containing three 15,000 gallon storage tanks for MIC

METHYL ISOCYANATE AT A GLANCE

Manufacture [edit]

Methyl isocyanate is usually manufactured by the reaction of monomethylamine and phosgene. For large sc: combine these reactants at higher temperature in the gas phase. A mixture of methyl isocyanate and two mo, but N-methylcarbamoyl chloride (MCC) forms as the mixture is condensed, leaving one mole of hydrogen chl

The methyl isocyanate is obtained by treating the MCC with a tertiary amine, such as N,N-dimethylaniline, or using distillation techniques.^[13]

 H_3C $H_3C-N=C=0$ + HCI

мсс

Methyl isocyanate is also manufactured from N-methylformamide and air. In the latter process, it is immediate process to make methomyl.^[14] Other manufacturing methods have been reported.^{[15][16]}

Appearance	Colorless liquid
Odor	Sharp, pungent odor ^[1]
Density	0.9230 g/cm ³ at 27 °C
Melting point	-45 °C (-49 °F; 228 K)
Boiling point	39.5 °C (103.1 °F; 312.6 K)
Solubility in water	very soluble ^[2]
Vapor pressure	57.7 kPa
	Structure
Dipole moment	2.8 D
The	rmochemistry
Std enthalpy of formation (Δ _f H ^e 298)	–92.0 kJ·mol ⁻¹⁽²⁾
	Hazards
NFPA 704	2 3 3
Flash point	-7 °C (19 °F; 266 K)
Autoignition temperature	534 °C (993 °F; 807 K)
Explosive limits	5.3–26% ^[2]
Relat	ed compounds
Related compounds	Methyl isothiocyanate

THE STORAGE TANK BUNKER

Relief Valve Vent Header (RVVH)

▲ Figure 1. Three 15,000-gal storage tanks were available for MIC storage. Tank 610 was the source of the MIC released into the air. Source: Adapted from Ref. 6. - Design intent was for Tanks 610 and 611 to each store $\frac{1}{2}$ capacity (7,500 gallons) of MIC

- Tank 619 was reserve capacity for excess and/or O.O.S. MIC

- Tank 610 was the source of the release

North Jersey Section, AIChE

Figure 1 Copyright 2014, American Institute of Chemical Engineers. Used with permission

THE STORAGE TANK PFD

▲ Figure 2. The tanks were equipped with refrigeration units to maintain storage temperatures below 15°C and nitrogen blanketing to prevent ignition of the MIC. Source: Adapted from Ref. 6.

Figure 2 Copyright 2014, American Institute of Chemical Engineers. Used with permission

THE VENT GAS SCRUBBER & FLARE TOWER

▲ Figure 3. A scrubbing system downstream from the tank was designed to capture toxic emissions and vent them to a flare tower. Source: Adapted from Ref. 7.

North Jersey Section, AIChE

Figure 3 Copyright 2014, American Institute of Chemical Engineers. Used with permission

7 LAYERS OF PROTECTION TYPICALLY EMPLOYED IN CPI

Level 6: Physical Protection — Dikes
Level 5: Physical Protection — Relief Devices
Level 4: Automatic Action — SIS or ESD
Level 3: Critical Alarms, Operator Supervision, and Manual Intervention Level 2: Basic Controls and Process Alarms Layer 1: Process Design, Personnel Training, and Operator Actions

▲ Figure 4. CPI plants are designed with multiple layers of protection.

1ST Layer: Process Design

- 2nd Layer: Basic Control Systems and Alarms
- 3rd Layer: Critical Alarms, Manual Intervention
- 4th Layer: Automated Safety Instrumented System
- 5th Layer: Relief Devices
- 6th Layer: Containment of Releases
- 7th Layer: Plant's Emergency Response

Procedures

- "8th Layer": Community Response when it gets to
- this level, it's typically catastrophic

IMPORTANT: Each layer must be independent of the others!

LAYER OF PROTECTION ANALYSIS (LOPA)

• LOPA

- techniques evolved from the late 1980's to the 1990's to evaluate major layers that can mitigate the injury & damage from an event like a fire, explosion or release
- LOPA
 - is a holistic approach, identifying major safeguards, categorizing them, determining if they are dependent or independent, and assessing their ability to perform on demand
- LOPA
 - is a semi-quantitative analysis tool to evaluate whether adequate mitigation exists for a particular process safety incident, (i.e.; Initiating Event, or I.E.)
- LOPA
 - estimates the effectiveness of existing major layers of protection to prevent/mitigate an I.E., the frequency of which is denoted "IEF"
- LOPA
 - *is not* a complete event-tree analysis

- In a LOPA analysis, only two outcomes exist:
 - The protective measure works when it is needed, or
 - The protective measure does not work when it is needed
- These two potential outcomes can be characterized by:
 - A probability to work on demand (PWD), or
 - A probability to fail on demand (PFD)
- The sum of these probabilities = 1.0 for each independent protection layer (IPL)
- The key equation of the LOPA analysis therefore is:

$$f_i^c = \text{IEF}_i * \text{PFD}_{i1} * \text{PFD}_{i2} * \dots * \text{PFD}_{ii}$$

$f_i^c = \text{IEF}_i * \text{PFD}_{i1} * \text{PFD}_{i2} * \dots * \text{PFD}_{ij}$

- f_i^c = the frequency of the consequence occurring for scenario "*i*" per unit time (*time* ⁻¹)
- f_i^c = a relative number used to compare different layers and scenarios
- IEF_i = the frequency of the initiating event for scenario "*i*" per unit time (*time* ⁻¹)
- *PFD*_{*ij*} = the probability of failure on demand of the independent protection layer "*j*" for scenario "*i*"

LAYER OF PROTECTION ANALYSIS FOR MIC STORAGE TANK 610

• SCENARIO:

- Major release of MIC vapor into surrounding community
- INITIATING EVENT: (possibilities)
 - Storage tank leak
 - Wall of tank fails (e.g.; an explosion)
 - Relief system fails

• IDENTIFY THE MOST LIKELY EVENT:

 Contamination of storage tank contents (The actual event that initiated the Bhopal disaster was traced to the entry of ~ 500 kg of water into Tank 610)

• IDENTIFY THE FREQUENCY OF THE INITIATING EVENT (IEF):

- This may be known, or it may need to be estimated
 - » The MIC plant opened in 1980 and the initiating event occurred 4.8 yrs after the plant began operating: IEF = 1 event / 4.8 yrs = 0.21 yr ⁻¹

• LAYER 1: Corporate Design Intent

- Two product storage tanks, (Tanks 610 & 611) each sized for twice the required volume, plus a third tank (Tank 619) for excess and off-spec product
- Tanks were equipped with level control indicators connected to alarms in the Control Room
- Operating training was also a part of this first layer

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

- It would be reasonable to estimate the probability for failure on demand for these measures as 1 failure every 10 years, or $PFD_{11} = 0.1$

• LAYER 2: Basic Controls

 The tanks were equipped with a temperature control system – an external refrigeration system was used to maintain the tank temperature at less than 15°C

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

- It would be reasonable to estimate the probability for failure on demand for this measure as 1 failure every 10 years, or $PFD_{12} = 0.1$

- LAYER 3: Critical Alarms and Manual Intervention
 - The tanks were equipped with a temperature and level indicators that would sound an alarm and flash warning lights on a Control Room panel.
 - The plant's safety manual stated:
 - » "If the methyl isocyanate tank becomes contaminated or fails, transfer part or all of the contents to the empty, standby tank" ⁽¹⁾

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

- This layer depends on a human response to an abnormal condition, which under the best of circumstances has a $PFD_{13} = 0.1$ ⁽²⁾

² Center for Chemical Process Safety "Guidelines for Initiating Events and Independent Protection Layers," AIChE, New York, NY, and John Wiley and Sons, Hoboken, NJ (2014)

North Jersey Section, AIChE ¹ Union Carbide Corp., "Methyl Isocyanate Manual (F-41443A-7/76)", Union Carbide, New York, NY (1976)

- LAYER 4: Safety Instrumented System (SIS) or Emergency Shutdown Device (ESD)
 - The MIC plant was not equipped with either an SIS or an ESD
- CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

 $- PFD_{14} = 1.0$

• LAYER 5: Relief Devices

- The relief system consisted of a rupture disc, a relief valve, and a flare system, in series.
 - » **NOTE:** Although the NaOH scrubber was also part of the relief system, it was designed for small releases and therefore does not affect the scenario of a major release of MIC

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

- The overall PFD for this combination of devices is $PFD_{15} = 0.1$

• LAYER 6: Dike

- The plant did not have a secondary containment dike.
 - » NOTE: Even if a dike were present, it's PFD would = 1.0, MIC is extremely volatile and temperatures in central India can exceed the 39°C boiling point of MIC. Vapors would evolve at deadly concentrations, making a containment dike meaningless.

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

 $- PFD_{16} = 1.0$

• LAYER 7: Plant Emergency Response

 Some plant personnel were trained in emergency response and attempted to respond.

• CALCULATE / ESTIMATE THE PFD FOR THIS LAYER:

- As with Layer 3, this layer depends on a human response to an abnormal condition, which under the best of circumstances has a $PFD_{13} = 0.1$ ⁽²⁾

² Center for Chemical Process Safety "Guidelines for Initiating Events and Independent Protection Layers," AIChE, New York, NY, and John Wiley and Sons, Hoboken, NJ (2014)

FREQUENCY OF OCCURRENCE CALCULATION

$f_i^c = \text{IEF}_i * \text{PFD}_{i1} * \text{PFD}_{i2} * \dots * \text{PFD}_{ij}$

- $f_1^c = \text{IEF}_1 * [\text{PFD}_{11} * \text{PFD}_{12} * \text{PFD}_{13} * \text{PFD}_{14} * \text{PFD}_{15} * \text{PFD}_{16} * \text{PFD}_{17}]$
- $f_1^c = (0.1 \text{ yr}^{-1}) * [0.1 * 0.1 * 0.1 * 1.0 * 0.1 * 1.0 * 0.1] = 1 \times 10^{-6} \text{ yr}^{-1}$

In other words – if everything was adequately designed and functioning properly, the frequency of this catastrophic release occurring would be:

1 major release in a million years!

So why, then, did this event occur at all?

Answer: Because all of the layers were compromised, and therefore the PFD for each layer was = 1.0

ANALYSIS - Layer 1: Design, Procedures & Training

- The operating instructions specified, "Do not overfill the tank beyond 50% full with MIC".
 - Someone within operating supervision made the decision to fill the tank to 85% of capacity

- MIC was an intermediate. What you don't have in inventory cannot leak, catch fire or otherwise cause a problem.
- Design the plant to produce and use intermediates on demand.

ANALYSIS - Layer 2: Cooling System

- The refrigeration system installed to remove the exothermic heat of reaction within the storage tank was disabled by plant management
 - This was portrayed as a cost-saving measure as plant management was under pressure to cut costs to avoid plant closure

- Management continually looks for ways to reduce costs. Engineers need to communicate that cost reductions should not be undertaken for critical safety systems.
- Evaluate the removal of any safety systems through an MOC analysis to understand the implications.

ANALYSIS - Layer 3:

Instrumentation & Manual Intervention

- The plant had high-temperature and high-level indicators and alarms to alert personnel
 - Operators were aware of the rising pressure and temperature in Tank 610; however, there is no record of a manual intervention to transfer material to Tank 619

- This layer relies on human factors and requires people to take corrective action in an emergency
- Training exercises that simulate the proper corrective action(s) should be developed within the plant and practiced by operators.

ANALYSIS - Layer 4: Automation

- No Safety Instrumented System (SIS) or Emergency Shut-down Device (ESD) was evident in the design of the Bhopal plant
 - For example, there was no automated device that might quench a runaway reaction with the storage tank

- Under the right conditions SIS and ESD can have a PFD = 0.01
- It is important that the SIS and/or ESD be completely independent and work without any human intervention.

ANALYSIS - Layer 5: Relief System

- The rupture disc followed by the relief valve worked on demand and the RVVH had sufficient capacity, preventing what could have been a even more catastrophic explosion
 - However, the relief system failed because the flare system was out of service awaiting replacement of a 4-foot section of corroded pipeline. The material in the RVVH had nowhere to go but into the air.

- Are any of your safety systems out of service awaiting repair?
- If so, is there a sense of urgency to make the repair so that the safety systems are available to do their job on demand?

ANALYSIS - Layer 6: Diking

- The existence of a dike is irrelevant, since this was a toxic gas release
 - Diking around the storage tanks would not have affected the outcome of this disaster.

- Do your liquid storage tanks have diking and has it been inspected recently?
- If not equipped with a dike or catch basin would you be concerned if a major release were to occur?

ANALYSIS - Layer 7: Emergency Response

- A few operators tried spraying water on the gas plume leaving the scrubber
 - The hoses were insufficiently pressurized and the 100-foot-high stream could not reach the plume, which was exiting at 120 feet.

- Emergency response must be practiced . Mock scenarios need to be run through so things like low water pressure will be discovered beforehand
- Should every employee at your facility have the authority to shut down the plant if a potentially unsafe event appears to be happening?

IN CONCLUSION...

"There is no expedient to which a man will not resort to avoid the real labor of thinking."

