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Systems modeling 

•  Complex systems, comprised of many 
interconnected components 

•  Interdependencies between systems The Interdependent Network Design Problem for Optimal Infrastructure System Restoration 9

a. Representation of the gas network in Shelby 
County, with service areas. 

 

b. Representation of the water network in Shelby 
County, with service areas. 

 

c. Representation of the power network in Shelby 
County, with service areas. 

 

d. Representation of the subareas (interconnected areas), 
shared by water and gas networks in Shelby County. 

 
Fig. 2. Graphical representations of the gas, water and power networks at a transmission level in Shelby County, TN, and 

the geographically interdependent areas between the gas and water networks. 

These test network descriptions are taken from Hernandez-
Fajardo & Dueñas-Osorio (2010), Hernandez-Fajardo & 
Dueñas-Osorio (2011), and Song & Ok (2010) where a more 
in-depth analysis as to why and how these networks are 
interconnected is provided. Second, this example takes under 
consideration the geographical interdependence between the 
water and the gas networks. Given that both networks are 
underground, there is a shared area preparation cost related to 
the reconstruction process of each component, that is, there is 
a saving potential by repairing co-located components from the 
water and the gas networks simultaneously.  

Even though the sim+INDP allows including more 
interdependencies, such as physical interdependence between 
the gas and the power networks, the authors did not include 
them in order to keep the example realistic yet simple to 
understand and study. 

Notice that even though some previous works on 
interdependent infrastructure recovery (Lee II et al., 2007; 
Cavdaroglu et al., 2011; Nurre et al., 2012) have mentioned the 
existence and importance of geographical correlation, most 
have focused on the failure probability correlations between 
components, but not in the savings in time, money, and efforts 
that could be made if assigning simultaneous recovery jobs for 
co-located components. Given that this example considers 
geographical interdependence, it is important to define a set of 
geographical spaces�࣭. In particular, ࣭ is defined as the set of 
areas resulting from intersecting the service areas of the gas 
and water networks, which are the ones under geographical 
interdependence in this study.  

Figure 2 shows the gas, water, and power networks, as well 
as the intersection areas that constitute �࣭ . Note that these 
intersection areas are complementary and mutually exclusive. 
As expected, the cost of preparing a given subarea is positively 
correlated to its own size. 

Regarding the disaster scenario, Adachi & Ellingwood 
(2009) presented a realistic earthquake scenario for Shelby 
County, with epicenter at ͵ͷǤ͵ι�ܰ  and ͻͲǤ͵r�ܹ  (͵͵��� 
from Memphis center), and an approximate average magnitude 
of ܯ௪ �ൌ �͹Ǥͷ . For such an epicenter, this study includes 
magnitudes within a range of ࢝ࡹ ൌ �͸ to ͻ. Within this range 
of magnitudes, the number of Monte-Carlo replications is 
limited to�ͳǡͲͲͲ when results show steady behaviors. For this 
example, the authors assume that there is only one limited 
resource used for the reconstruction process (constraints (6)), 
denoted by ࢜ , and that the amount used recovering each 
component is exactly one unit of that resource. The INDP 
formulation easily allows considering a more realistic set of 
constraints, like having a limiting budget for the recovery of 
each component. Nevertheless, the conclusions that such 
analysis could provide would be too specific for our case study, 
and would hardly be generalizable for other systems. On the 
other hand, by assuming that each component uses a similar 
amount of resources for its recovery, the results will be driven 
solely by the impact of such recovery in the performance of the 
system. Note that under the assumptions proposed for this case 
study, the limited resource would be equivalent to the 
maximum amount of components (nodes and arcs) to be 
repaired per iteration of the iINDP. We use values of�࢜ from 3 
to 12, in order to analyze the sensitivity of the framework with 
respect to this parameter. In particular, the authors chose ͵ as 
the lower bound of ࢜ , such that it is always possible to 
reconstruct at least one component from each of the three 
networks. Likewise, the authors chose ͳʹ as the upper bound 
of ࢜ in this example, given that for greater values constraints 
(6) would not highly affect the reconstruction strategy. Figures 
4-7 show the results associated to the evolution of the costs 
involved in the recovery process; as expected, note how the 
costs depend on the magnitude of the earthquake. The cost 
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reconstruct at least one component from each of the three 
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amount of resources for its recovery, the results will be driven 
solely by the impact of such recovery in the performance of the 
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From: Gonzalez et al, “The interdependent network design problem for optimal infrastructure system restoration,” in review 

e.g., water, power, and 
gas infrastructures 
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Systems modeling 

•  Support decision making in system design, 
management, and rehabilitation 

•  Achieve efficient resources management and improved 
system performance (reliability, resilience) 

•  Challenges 

–  Uncertain information 

–  Evolving information 

–  Large, complex 
systems 
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One method: Bayesian networks (BNs) 

•  DAG: nodes represent RVs, links dependencies 
between variables 

•  Advantages 

–  Uncertain information: probabilistic model to        
support decision making under uncertainty 

–  Evolving information: evidence entered into BN 
propagates through the network, allows for updating as 
new information becomes available 

•  Traditionally limited by the size and complexity of system 
that can be tractably modeled as a BN à algorithms to 
enable larger systems to be modeled as BNs 

X5 

X4 X3 

X2 X1 

p(x) = p(xi | Pa(xi ))
i=1

n

∏
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component #s 

•  Prior probabilities of failure for all components = 0.1 
 
 

          Forward inference 
 
 
 
 
 
 

          Backward inference 

Example 
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Modeling dynamic systems with data 

•  Graphical dynamic Bayesian network model 
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Conclusions for FEW Nexus 

•  Complex systems modeling 
•  Capturing interdependencies, tradeoffs among 

the three systems 

•  Collecting / validating / integrating data 
•  Metrics for system performance and 

sustainability 

contact: itien@ce.gatech.edu 


