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Watts-Strogatz model N=20, K=4, B=0.2

Classic Network Theory
Applications

Small World Network,
Watts and Strogatz

Control Centrality, Liu et al. (2012)
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X, X, X, Betweenness Centrality for Amazon
Rainfall, Boers et al. (2013)
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River Basin Power Law Scaling, Zaliapin et al. (2010)
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Three types of networks intersect at a specific
process node in a multitype Coupled Natural-
Human System network:
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Embedded Resource Impact Accounting (ERA):

A mulittype network theory for complex Coupled Natural Human Systems

Net Systemic Impact (footprint) of a Process, E: the sum of the Direct
(U) and indirect (V) network impacts of a process on a stock of
Interest, conditioned on a local/external (I/x) boundary (Q=0 case)

E=U'+U" +V|:\| _VOIUT +VI; _VOXUT

“Virtual Water” (Allan, 1993) is a special single-type network case of
ERA. ERA s itself a special case of I/O and LCA, which are also
network concepts. locaL L(i,j,r;) =1 \NON-LOCAL L(m,j,r;) =0

\
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The foundation of ERA is the partial
embedded resource impact V,, ; the
sum across intermediaries k and r,
IS the net indirect impact V

o U(IJ k: Tf{) .
Vy(ij.rj ki) = S U k) « U(k,j,7))




m A CNH Problem: Water Scarcity

ECONOMY PROJECT

V. C. Tidwell, P. H. Kobos, L. A. Malczynski, G. Klise, C. R. Castillo,
Exploring the water-thermoelectric power Nexus. Journal of Water
Resources Planning and Management 138, 491-501 (2012).



NWEP

How to cope with Water Scarcity?

1. Technology, efficiency, and reuse (expensive)?

Curtail economic growth (too expensive)?

Political reallocation of water from less valuable (energy,
food) to more valuable uses (who decides)?

Economic reallocation of water resources using prices and
water rights (political barriers and high transaction costs)?

Compromise our social, environmental, or economic values?

. Outsource largest and least valuable water uses using the

economic network to connect to distant water supply?

These are systems-level guestions
We need systems-level information
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®¥ The National Water-Economy Database 1.0
NWEP (NWED)

e A complete map of the US water footprint

A hydro-economic map of the water supply chain, including
precise teleconnections to drought-prone locations

e A map of the “water-everything” nexus: food, energy, services,
manufacturing, etc.

e Detailed enough for policy assessment and decision making at
the crucial city and watershed scales

* Provides the systems level information needed to evaluate
local water problems in context

* Provides complete water productivity benchmarking ($/gal)

 This is basic data we need to answer Food-Energy-Water (FEW)
and other complex water resource system guestions!




Preliminary Data — Not for Publication
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wee US Water Use

NATIONAL WATER
ECONOMY PROJECT

Annual Total Withdrawals (U, Mm?3)

Annual Agricultural Withdrawals (U,,, Mm?3)

Also see: M. A. Maupin et al., "Estimated use of water in the
United States in 2010," (US Geological Survey, 2014).



Preliminary Data — Not for Publication
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Virtual Water Inflow (V,y, Mm?3)

wee Virtual Water

NATIONAL WATER
ECONOMY PROJECT

Net Virtual Water (Vygr, MM3)

(green is net outflow, negative)



Preliminary Data — Not for Publication
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NWEP

NATIONAL WATER
ECONOMY PROJECT

The US Net Blue Water Footprint
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Preliminary Data — Not for Publication

¥ Vulnerability of the Footprint to
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Castillo, Exploring the water-thermoelectric power Nexus. Journal of
Water Resources Planning and Management 138, 491-501 (2012). VUy = U X WSIg
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Flagstaff’s Water Footprint

Breakdown of Flagstaff's External Water Footprint
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Preliminary Data — Not for Publication
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¥ Flagstaff’s Indirect Vulnerability
to Water Stress & Drought
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NWEP

Footprint Diversity
Indicators Inform
lagstaff’s Potential
Resilience to
Drought
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Flagstaff: Vulnerable but also
Potentially Resilient to Drought
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& Phoenix Metro Virtual Water Flows

Virtual Water Flow
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R. Rushforth, B. Ruddell, The Hydro-Economic Interdependency
of Cities: Virtual Water Connections of the Phoenix, Arizona
Metropolitan Area. Sustainability 7, 8522 (2015).
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©y Water Productivity Benchmarking
NWEP for Phoenix Area Cities
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for Phoenix MSA Cities, City of Chandler, Arizona, September, 2012.



NWEP

Summary

The new National Water-Economy Database (NWED) provides
a complete county/city/sector water footprint for the US.

Local and Regional connections dominate (re: Vorosmarty et
al., Science 2015, “What scale for water governance?”)

Long range teleconnections create vulnerability for major
cities; cities are the hubs of the US hydro-economic network

This is basic data needed for FEW work (Food-Energy-Water),
including data-driven modeling of water & the economy

Embedded Resource Accounting (ERA) and related Footprint-
family metrics can identify connections, efficiency,
productivity, vulnerability, and resilience on the multitype
socio-economic network coupling Food, Energy, and Water
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Decision Boundaries and Worldview
Determine the Perceived CNH

Include Indirect (Embedded/Virtual)?

No

Yes

Include External?

Narrowly self-interested Manager in typical
command and control style. Ex.: Hydraulic
mission style or property rights style of
development and resource management [57,
58].

No

Narrowly self-interested Manager wishing to
utilize indirect market pressure, trading, and
offsets as an efficient and adaptive policy tool to
augment typical command and control style. EX.:
Water Footprint, Carbon Footprint Manager [29,
59], National cap and trade and offset plans.

Socially/Environmentally activist manager
causing positive or negative external direct
resource stock impacts but voluntarily or by
regulation counting them in management
decisions. Ex.: Company purchasing land in
foreign countries for direct resource use [60]

Yes

Socially/Environmentally activist manager
voluntarily or by regulation counting external
direct impacts and also voluntarily or by
regulation participating in external indirect
offsets, or landowner receiving compensation for
selling external offsets. Ex.: Global EF offsets
[59, 61].

Perceived and accounted impacts depend on Point of View

Perform accounting against boundaries, or infer the location of the boundaries!




®¥ The National Water-Economy Database 1.0
NWEP (NWED)

Water footprint methods giving county-to-county virtual water flows for the United States

Blue Water, no green (yet), withdrawal-based

43 Commodity Types incl. ag, energy, manuf., etc. Aggregated to 5 Economic Sectors:
Agriculture, Industry, Livestock, Mining/Energy, and misc. Urban

(dis)Aggregated to individual municipalities and MSA’s
Complete US water use and economic production are in the water footprint

Missing from version 1.0 are inter-county service sector and electric trades, and also the
virtual water content of foreign-origin commodities (relatively small)

Annual average County Level and Economic Sector data; not seasonal or establishment

US Commodity Flows — Freight Analysis Framework (FAF3) from Oak Ridge National Labs
US Water Census- USGS Water Use of the Nation

US Economic Census

USDA National Agricultural Statistics Survey

U = Water Use

F=U-+ VIN — VOUT Viy = Virtual Water Inflow
Vour = Virtual Water Outflow



Preliminary Data — Not for Publication

Impact of Virtual Water Trade on
Aquatic Ecosystem Water Balances
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w¥  Water Productivity Benchmarking
for Great Lakes Industries
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ater-in-Electricity Analysis
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Basin  State
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Embedded Water (Mgal)

A systematic shift of water impacts (and carbon emissions)

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

from California to energy exporters like Wyoming

25

A risky strategy for CA, given lstovioat Supply e e
| the CO river drought and
Suppliers’ junior water rights.

N
(=3

56%

Volume - Million Acre-feet

Water Supply
(10-year Running Average)

10
Water Use
(10-year Running Average)

S
B wppcar

B B WexporT
B Wiyport

USBR, 2012

30% 8%

31%

81% .
34% 100 2%

Martin and Ruddell [2012]



15% increase in water consumption through trade
in electricity on the Western U.S. power grid

U (Mgal)
Actual
Arizona 19322
California 20289
Colorado 16230
Idaho 868
Montana 5070
New 16330
Nevada 12023
Oregon 4129
Utah 16461
Washington 4587
Wyoming 16690
System 132000

V (Mgal)
Actual
-5824
25703
1471
3768
-1717
-6865
-578
-417
-5102
-111
-10328
0

E (Mgal)
U+V
13498
45992
17701
4636
3353
9465
11445
3713
11359
4476
6363
132000

U' (Mgal)
If-local
13498
31200
17928
1896
3353
9465
11445
3713
11359
4476
6363
114695

RS (Mgal)
U'-E

0

-14792

227

-2740

0

0

0

0

0

0

0

RS (%)
RS/U'

0
-47%
1%
-145%
0

Savings are negative, because of outsourcing to inefficient

producers. Note, however, this is not ‘unsustainable’. It

probably means water is less valuable/scarce in those places.
Martin and Ruddell [2012]



. " Ira A. Fulton . -
Model Results: Consumption PSU ..oy

ARIZONA STATE UNIVERSITY
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In the future, regional water savings via Trade
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Current demand, no drought
Current demand, severe drought
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This current number iIs

water inefficient AZ rather

actually negative (~-15%). In
reality CA buys power from

than water efficient OR and
WA. (models aren’t perfect)

Herron et al., in review
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