Panel: Ongoing Projects and Next Steps

Dale L. Keairns, PhD
Executive Advisor

Food Energy Water Nexus Workshop
Baltimore, MD
October 7-9, 2015
World Café: Energy-Water-Food Nexus Professional Society Collaboration

- AIChE / IChemE Collaboration
 - Solving the nexus challenge requires integrated systems approach – a chemical engineering competency
 - Requires collaboration between multiple disciplines and cultures
 - An engineering ‘voice’ is important to inform public policy
 - Past presidents of AIChE and IChemE initiated collaboration to address this challenge
 - Initial work focused on building awareness within chemical engineering community through technical meetings – invitations to academic, industry, government; multiple disciplines

Drivers
- Population Growth
- Urbanization
- Technology
- Climate Change
- Industry Development
- Agriculture Transformation
- Cultural Behavior

Energy
- Fossil fuel use; Biofuels; Water use; Capacity growth; Resilient Power; Smart buildings; Energy Efficiency; Cost

Water
- Domestic – agricultural - industry use competition; Quality; Scarcity

Food
- Higher yields/acre; Rainfed vs Irrigated Ag; Food waste; Resource rich food demand; Land use

Energy Intensity
- e.g. Fertilizer, Chemicals, Transport, Processing

Environmental Impact

AIChE / IChemE Collaboration: Hank Kohlbrand, Dale Keairns, Richard Darton, Desmond King; Darlene Shuster (AIChE staff), Andy Furlong (IChemE staff)
World Café Energy-Water-Food Nexus
Professional Society Meetings – Example Presentations

- A Process Methodology for Assessing Sustainability Applied to the Nexus, Richard C. Darton, University of Oxford

- Energy-Water-Food: Maui and the World, Carey W. King, University of Texas

- The Water-Energy-Food Nexus, Olivier Dubois, UN FAO

- Impact of Future Energy on Water-Food-Energy Nexus, Joe Powell, Shell Chief Scientist

- The P-graph Methodology as Tool for Studying Sustainability in the Energy-Water-Food Nexus, Heriberto Cabezas, U.S. EPA, University of Pannonia

- Sustainability considerations in the energy-water-food nexus, Adisa Azapagic, University of Manchester

- Agriculture: Feeding the World within Planetary Boundaries, Kate Scow, UC Davis

- Addressing challenges at the water-energy-food nexus, Desmond King, Chevron

- Science / Technology / Risk Communication: It’s Harder Than You Think, Paul Fischbeck, CMU
Prior Work That Informs the Collaboration*

- **Purpose of Nexus Studies**
 - Discussion papers
 - Quality of life studies
 - Product studies
 - Develop system modeling tools

- **Aggregated Nexus Modeling**
 - Data intensive computational models
 - Life cycle and supply chain analysis
 - Accounting for the future (business as usual; scenarios)

- **Case Studies**
 - Regional development
 - Specific sectors (e.g. sustainable agriculture, food production, consumer goods)
 - Urban areas

* Based on Nexus Review by Dale Keairns, Richard Darton, Angel Irabien
World Café: Energy-Water-Food Nexus
Case Studies and Engaging the International Community

- Invitation for specific projects to serve as case studies: develop system modeling methodologies, identify needs and candidate solutions

- Extended collaboration to include the World Chemical Engineering Council to include broader international chemical engineering communities

Next steps
- Implement case studies
- Lessons from case studies
- Continue ‘awareness’ activities within chemical engineering community (U.S. and international)
- Initiate dialogue with others (science & engineering, social science, NGOs, business, public policy)
Collaboration Case Study Project Invitation
Techno-Economic-Societal-Environmental System

Problem Definition

Identify Question
e.g. policy, drought constraint, product sustainability, Quality of Life

Study Objective
e.g. solutions, technology opportunity, metrics, analysis methodology, understanding

System Boundaries
Time and Geographical
e.g. State, Watershed, Food Supply Chain

Approach

System Analysis Methodology
e.g. integrated system model, LCA, scenarios

Data Sources
e.g. Population (urban/rural), Water availability and Use, Energy supply/demand, Ag production, Import/Export flows

Assumptions
e.g. demographics, energy-water-food system technology, ag yields, societal change, climate change, industry growth, policy
Case Study Illustration*
Objective: Electric Power Technology – Water Trade-offs

Parameters Affecting Electricity-Water Demand in the Watershed
- Population
- Urban / Rural
- Environmental
- Agriculture
- Industry
- Electric Power
- ‘Policies’

Water
Water Supply
- Unappropriated surface water
- Unappropriated groundwater
- Appropriated but unused
- Brackish groundwater
- Wastewater

Assumptions about ‘drought’
Assumptions about electricity import / export
Assumptions about fate of existing power plants
Assumptions about water resource distribution
Assumptions about Ag, M&I, Electricity, Environment
Assumptions about new technology, water requirements, CO₂ emissions, COE

Time Horizon: Present to 2040

* DOE NETL Case Study