Energy-Water Nexus Research: Data Challenges

Kristen Averyt, PhD University of Colorado Boulder

Associate Director for Science

Cooperative Institute for Research in Environmental Sciences

AlChE Food-Energy-Water Workshop Oct. 7, 2015

Cooperative Institute for Research in Environmental Sciences

Water for Electricity (2008)

Freshwater Intensity (gallons/kWh)

Withdrawals By Source (2008)

Effluent Temperatures

Averyt et al. 2013a; Madden et al., 2013; EW3 2011

Challenge #1: Geolocation

Challenge #1: Geolocation

Cooperative Institute for Research in Environmental Sciences

Challenge #1: Geolocation

Cooperative Institute for Research in Environmental Sciences

Challenge #2: Power Plant Water Use

Challenge #2: Power Plant Water Use

Mechanism to Estimate Water Use

CIRES

Cooperative Institute for Research in Environmental Sciences

Challenge #2: Power Plant Water Use

Verify Cooling Technology & Water Source

Cooperative Institute for Research in Environmental Sciences

The Outcome

X	1 2 3 4 -				Generato	rDatabase_v	alue	sonly_2008_3a.xls	[Compatibility N	/ode] - Micr	osoft Excel				- 6	00
Fil	Home Insert Pag	e Layou	t Form	ulas Data	Review	View								9	v 🕜 🗆 🖻	j.
	S21 ▼ (*	- f _x	Gas		K	W										
	A B	С	E	F	S	W		Х	Y	Z	AB	AC	BD	BE	BF	Ē
	🧧 Plant Name	State	Plant	Generator	Primary Fue	eGRID		Best Estimate	Best Estimate	Generation	EIA Lat	EIA Lon	Generator	Generator	Unit should	٦
	N N N N N N N N N N N N N N N N N N N		Code	Code	Туре	Subregion		Generation in	Capacity Factor	Data Source			Estimated Water	Estimated	be cooled?	
	¥				(Definition)			2008	in 2008				Withdrawal Rate	Water		
	E C												(Gallons/WWW)	Consumption (Gallons/MWb)		
3	v	· •	•		-		-	•	-		• •	-	Ļ	(Gallonsinivi)	•	L
4	0 B C Cobb	MI	1695	1	Gas	RFCM		120	0%	EIA 923 5A	43.28	-86.27	388,617,540	-	1	
5	0 B C Cobb	MI	1695	2	Gas	RFCM		87	0%	5 EIA 923 5A	43.28	-86.27	388,617,540	-	1	
6	0 R E Burger	он	2864	3	Coal	RFCW		4,069	0%	5 EIA 923 5A	39.96	-80.76	208,830,719	-	1	
7	0 Lake Catherine	AR	170	2	Gas	SRMV		167	0%	5 EIA 923 5A	34.52	-93.06	160,472,355	-	1	
8	0 Havana	IL	891	3	Oil	SRMW		241	0%	5 EIA 923 5A	40.28	-90.08	38,387,328	6,687,504	1	
9	0 Havana	IL	891	4	Oil	SRMW		207	0%	5 EIA 923 5A	40.28	-90.08	38,387,328	6,687,504	1	
10	0 Lake Catherine	AR	170	1	Gas	SRMV		670	0%	5 EIA 923 5A	34.52	-93.06	37,146,339	-	1	
11	1 Grays Harbor Energy Facili	ty WA	7999	ST1	Gas	#N/A		1,191	0%	EIA 923 5A	46.97	-123.48	15,053,594	11,963,646	1	
12	0 Sam Bertron	IX	3468	SI1 5	Gas	ERCI		26,572	2%	5 EIA 923 5A	29.73	-95.17	9,499,438	888	1	
13	0 Deepwater	NJ	2384	1	Gas	RECE		3,457	0%	5 EIA 923 5A	39.65	-75.52	8,748,367	-	1	
14	0 Jemeries	SC	3319	2	01	SRVC		2,422	1%	5 EIA 923 5A	33.24	-79.92	8,590,784	9,740	1	
10	U Jemeries	SC	3319	2	01	SRVC		3,1/8	1%	5 EIA 923 5A	33.24	-79.92	6,547,162	7,423	1	
10	0 Rock River	VVI	4057	2	Gas	MROE		1,261	0%	EIA 923 5A	42.58	-89.58	5,107,760	33,882	1	
10	0 C D Moletech Ir		4057	2 0T4	Cas	FROE		7,024	10/	EIA 923 DA	42.00	-09.00	5,107,760	50,002	1	
10	0 C D Multiosh Ji	TV	2620	511 5	Can	FREE		7,004	79/	EIA 923 UA	20.00	-01.92	5,095,730	50,606	1	
20	0 Clean Flood	MA	1600	\$	Oil	NEWE		2,007	10/	EIA 923 JA	32.00	-90.01	4,002,542	11 872		
21	0 Cleary Flood	EI	660	\$	Cae	ERCC		1.015	1.2	EIA 022 EA	41.07 27.4F	-/ 1.11	4,502,542	22.242	1	
22	0 Vero Reach Municipal Row	0 El	603	5	Cae	FROC		2,094	10/	EIA 022 5A	27.4	-00.34	3,001,404	23,242	1	
23	0 Harding Street	IN	990	4	Oil	RECW		207	0%	EIA 923 5A	39.71	-86.19	3 646 851		1	
24	0 Eddystone Generating Stat	tir PA	3161	Š.	Oil	RECE		23.449	1%	EIA 923 5A	39.86	-75 32	3 367 206	1.006	1	
25	0 Eddystone Generating Stat	tic PA	3161	4	Oil	RECE		21 493	1%	EIA 923 5A	39.86	-75.32	3 109 481	1,000	1	
26	0 Valley	тх	3508	4	Gas	FRCT		69 448	4%	EIA 923 5A	36.64	-96.37	2 822 457		1	
27	0 Astoria Generating Station	NY	8906	2	Gas	NYCW		29.249	2%	EIA 923 5A	40.78	-73.92	2,426,080	-	1	
28	1 Bowline Point	NY	2625	2	Gas	NYUP		42,944	1%	EIA 923 5A	41.20	-73.97	2,417,066	549	1	
29	0 Herbert A Wagner	MD	1554	1	Gas	RFCE		38,695	3%	EIA 923 5A	39.18	-76.53	2,083,188		1	
30	0 R W Miller	ΤХ	3628	2	Gas	ERCT		124,545	14%	5 EIA 923 5A	32.66	-98.31	2,023,889	-	1	
31	0 R W Miller	ΤХ	3628	3	Gas	ERCT		276,524	16%	5 EIA 923 5A	32.66	-98.31	1,644,115	-	1	
32	0 AES Alamitos LLC	CA	315	1	Gas	CAMX		33,908	2%	5 EIA 923 5A	33.77	-118.10	1,435,972	696	1	
33	0 AES Alamitos LLC	CA	315	2	Gas	CAMX		23,101	2%	5 EIA 923 5A	33.77	-118.10	1,362,271	1,021	1	
34	0 Glenwood	NY	2514	4	Gas	NYLI		43,702	4%	5 EIA 923 5A	40.83	-73.65	1,344,115	-	1	
35	1 Montville Station	СТ	546	6	Oil	NEWE		20,062	1%	EIA 923 5A	41.42	-72.10	1,314,637	-	1	
36	1 McKee Run	DE	599	3	Gas	RFCE		488	0%	EIA 923 5A	39.16	-75.57	1,208,533	241,707	1	
37	0 Port Everglades	FL	617	ST1	Oil	FRCC		175,464	8%	5 EIA 923 5A	26.09	-80.13	1,189,854	2,694,313	1	
38	0 PSEG Sewaren Generating	g NJ	2411	2	Gas	RFCE		6,399	1%	EIA 923 5A	40.56	-74.25	1,137,688	334	1	
39	0 PSEG Sewaren Generating	g NJ	2411	1	Gas	RFCE		7,563	1%	EIA 923 5A	40.56	-74.25	1,137,688	334	1	
40	0 PSEG Sewaren Generating	g NJ	2411	3	Gas	RFCE		20,324	2%	EIA 923 5A	40.56	-74.25	1,137,688	334	1	
41	0 PSEG Sewaren Generating	g NJ	2411	4	Gas	RFCE		36,277	3%	EIA 923 5A	40.56	-74.25	1,137,688	334	1	
42	1 Gould Street	MD	1553	3	Gas	#N/A		26,457	3%	5 EIA 923 5A	39.27	-76.62	1,081,580	-	1	
43	1 Lake Catherine	AR	170 Column D:	4 Dyna	Gas mic Databac	SRMV	Roil	118,000	2% 60 Roiler-Cooling C	EIA 923 5A	34.52 2 CoolingOps 0	-93.06	1,042,383	-	1	J
	te	water	Column Da	US Dyna	inic DataDas	EX EIA 800	000		co boller-cooling c	CIA 92	o coomigops o	CIA 80		J 110%		-(
Click h	ere to begin														~	

- Geolocation
- Cooling System
- Cooling Water Source
- Estimate Water Withdrawals
- Estimated
 Consumptive
 Use

Averyt et al. 2013a

Cooperative Institute for Research in Environmental Sciences

Water for Electricity: EIA v. Estimated (2008)

Surface Water Supply Stress (1999–2007)

Surface Water Supply Stress (1999–2007)

Power Intensity of Major Water Systems

Water Deliveries: 11.9 million acre-ft (14.7 km³)

3000 miles (4828 km) of pipelines, canals

Cooperative Institute for Research in Environmental Sciences

Central Arizona Project US Bureau of Reclamation

Cooperative Institute for Research in Environmental Sciences

Power Intensity of Major Water Systems

Water Deliveries: 11.9 million acre-ft (14.7 km³)

3000 miles (4828 km) of pipelines, canals

Cooperative Institute for Research in Environmental Sciences

Power Intensity of Major Water Systems

Water Deliveries: 11.9 million acre-ft (14.7 km³)

3000 miles (4828 km) of pipelines, canals

Proposed Deliveries: 4.5 million acre-ft (5.6 km³)

Cooperative Institute for Research in Environmental Sciences

(Gross) Power Intensity of Proposed Projects

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA

Groundwater Development Project Southern Delivery System Lake Powell Pipeline Project Yampa River Pumpback **Regional Watershed Supply Project** Cadiz Valley Water Conservation,... Northern Integrated Supply Project Eastern New Mexico Rural Water Project **Bay Delta Conservation Plan**

Thank you!

Kristen Averyt University of Colorado Boulder kristen.averyt@colorado.edu

Associate Director for Science Cooperative Institute for Research in Environmental Sciences

Cooperative Institute for Research in Environmental Sciences

Data Needs

- Accurate location information
- Simpler breakdown of information by generator, boiler, cooling system, etc.
- More accurate cooling type designation
- Enforcement and more accurate reporting of annual water use data
- More specific and accurate reporting of water source information
- Enforcement and more specific reporting of effluent temperature regimes
- Consistency among available data

From March, 2012 presentation to EIA

Cooperative Institute for Research in Environmental Sciences

Power Plant Water Use Data: No Nuclear

Power Plant Water Use Data: Non-Reporting

% Withdrawals Supporting Electricity Generation

Averyt et al. 2013b

Cooperative Institute for Research in Environmental Sciences

Power Intensity of Water Supplies*

The Outcome

