Biobased, Biodegradable Polymers and Coatings for Food Packaging

Prof. Ramaswamy (Ram) Nagarajan University of Massachusetts Lowell

Plastics demand by market segment

Plastic consumption by type

Plastics Packaging Waste - the dark side of a gift?

Land and water equally Polluted

Motivation

Packing waste - global problem

- By 2017 Global plastics film and sheet production will exceed 100 Billion Pounds¹
- Currently more than 10 billion pounds of plastic packaging waste generated annually in the US alone².
- ~ 8 -10% of waste is recycled in US²
- Recycling is only a partial solution
 - Low density of plastics used in food packaging renders recovery and recycling not economical
 - Disposal infrastructure ?!

¹ Global Industry Analyst,

² MSW Generation, Recycling, and Disposal in the United States report, 2010

Post consumer plastics waste recovery efforts are improving

But only in some countries - EU, Japan!

How about Biodegradable Plastics for food packaging?

Challenges with the Current Alternatives

- Resin availability
- Inferior properties as compared to polyolefins
- Processing issues shear sensitivity and low thermal stability
- High Oxygen Transmission Rate (OTR)
- High Water Vapor Transmission Rate (WVTR)
- Higher cost
- Commercial composting is often required

Material Properties

Oxygen and Water Vapor Transmission Rates

Materials	WVTR (g/m²*day*atm)	OTR (cc/m²*day*atm)
PLA (Nature works , 4032D)	375	>1000
PHB	178	350
PBAT (Ecoflex)	135	1200
PE-LD	425	11.5
PP	150	0.5
EVOH	0.05-0.2	1-5
PET	5-10	2-4
PVDC	0.15	0.1

- Even for packaging dry foods like Coffee beans, bioplastics don't meet the requirements
 - WVTR < 8 g/m2*day*atm
 - OTR < 55 cc/m2*day*atm

Can Bioplastics be tailored for food packaging?

Goals

- Extend the functionality of the existing biodegradable resins
- Improve Oxygen Transmission Resistance and Water Vapor Transmission Resistance
- Use biodegradable and naturally occurring materials
- Achieve economic viability

Layer by Layer Coating

Characterization of OTR and WVTR

Oxygen Permeation Analyzer 8001

Water Vapor Transmission

ASTM D-3985

ASTM E- 96 / ASTM F-1249*

Effect of pH on OTR and thickness

As pH increased, Thicker layers are formed, decreasing OTR

Effect of Coating on OTR

- Untreated PLA has a very poor barrier to Oxygen and thus the OTR is relatively High at >1000 cc/(m².day.atm)
- ► Biodegradable coating effectively reduces Oxygen transmission from 1040 cc/(m2.day.atm) to <15 cc/(m².day.atm)

Mechanical Properties remain intact

No significant change in mechanical properties after coating

Effect of Crosslinking on WVTR

MVTR of PLA coated with Barrier Layers

Crosslinking retains barrier properties of PLA coated films

Conclusions

- A strategy for biobased, biodegradable polymer film with improved barrier properties has been developed and tested
- OTR <10 cc/(m² x day x atm) & WVTR <1.02 g/ (m² x day x atm) achievable
- Crosslinking improves barrier properties and abrasion resistance of the coatings
- Approach is scalable engineering solution exists

Outlook for food packaging films

- Compostable bioplastics have a place in food packaging
 - where low barrier properties can be tolerated
 - thin films where recovery is not economical
 - single use products
- Recycling (down-cycling) should be part of the solution
- Integration with disposal infrastructure requirement for making the entire exercise sensible

Acknowledgements

Vishal Bavishi

Zarif Farhana Mohd Aris

Thank you!

