Exploiting Anaerobes for Biomass Breakdown and Sustainable Chemical Production

Michelle A. O'Malley Assistant Professor Department of Chemical Engineering University of California, Santa Barbara

Recalcitrant Biomass Hinders Production of Valuable Products from Cellulose

What can we learn from nature?

- Several microbiomes degrade biomass
- Anaerobes are promising understudied microbes
 - They populate the guts of animals, regulating immune function, nutrition, and other functions
 - Each microbe has a unique "job" within the community
 - New culture, sequencing, and proteomics tools allow us to understand and engineer these systems

Haitjema CH, et al, *Biotechnology and Bioengineering*, 111(8): 1471-1482 (2014).

R. Doi, Ann. N.Y. Acad. Sci. 1125:267-279 (2008).

O'Malley MA, Theodorou MK, Kaiser CA. Environmental Progress, 31(1): 37-46 (2012).

Objectives

Overall Goal: Accelerate the development of renewable lignocellulosic biofuels and value-added products

<u>Approach</u>: Learn from nature to engineer cellulases and anaerobes with novel functions

- Isolate gut microbes from their native microbiomes and integrate 'omics'-based tools to understand function
- Engineer anaerobic consortia for bioprocessing

Finding Fungi in the Muck...

John Henske

Fungal Isolates Exhibit Substrate Preference in Batch Culture

- > Fungi were extracted from a horse named "Finn" from Verrill Farm (Concord, MA)
- Fungal isolate renamed Piromyces sp finn and supported on reed canary grass
 - \succ Full growth cycle is seen in 5 6 days
 - Active growth is characterized by fermentation gas accumulation
 - Pressure accumulation allows substrate preference to be determined

(courtesy of Verrill Farm)

Famous Gut Fungi (Be careful what you wish for...)

Los Angeles Times

LOCAL I	U.S.	WORLD	BUSINESS	SPORTS	ENTERTAINI	MENT	HEALTH	STYLE	TRAVEL	OPINION	SHOP		
BREAKING	G	PHOTOS	VIDEO	CRIME	OBITUARIES	WEATH	ER TR	AFFIC	CROSSWOR	DS SUDC	KU	HOROSCOPES	APPS

Horse manure yields secret to ethanol fuel

April 11, 2013 | By Geoffrey Mohan

e 🛛 👽 +1 < 0

Michelle O'Malley knows good horse poop when she sees it. While at MIT, the chemical engineer scooped up some manure from Finn, a grass-fed horse at a sustainable farm in Concord, Mass.

That offal has led to a potential breakthrough in turning grasses and nonfood crops into an alternative fuel in attempts to wean motorists from fossil fuels and stem manmade climate change.

Enzyme Discovery: Why Sequencing a Genome is Not Enough

In order to identify the most powerful enzymes, it is critical to examine the transcriptome from a growing organism.

<u>Hypothesis</u>: Cellulosic substrates activate transcription of cellulolytic enzymes and cellulolytic complexes (cellulosomes) while sugars repress transcription

Piromyces sp finn is Rich in Several GH Enzymes and Dockerin-tagged Proteins

JGINT GENOME INSTITUTE

Objectives

Overall Goal: Accelerate the development of renewable lignocellulosic biofuels and value-added products

<u>Approach</u>: Learn from nature to engineer cellulases and anaerobes with novel functions

- Isolate gut microbes from their native microbiomes and integrate 'omics'-based tools to understand function
- Engineer anaerobic consortia for bioprocessing

Anaerobic Syntrophy: Controlling H2 and CH4 Production

- Metabolism of anaerobic fungi and methanogens is linked
- Products depend on the microbes present in a culture
- Fungi acetate, CO2, H2
- Fungi+Methanogens CO2, methane

Accelerating Biomass Breakdown through Anaerobic Co-culture

- Fungal/methanogen co-cultures accelerate biomass breakdown
- Metabolic underpinnings of the interaction are unknown
- Potential applications:
 - Synthetic systems for biogas production
 - Microbiome engineering to control carbon cycling

Jessica Sexton

Where else can we go from here?

"Compartmentalize" Biomass Breakdown and Product Conversion with Two Microbes

Goal: Metabolically link a model facultative anaerobe to released fungal sugars.

✓ Gut fungi produce more sugars than they need to grow and divide

- ✓ Model microbes like yeast and E. coli are easy to metabolically engineer
- ✓ "One pot" strategy to convert hydrolyzed sugars into value-added chemicals

"Compartmentalize" Biomass Breakdown and Product Conversion with Two Microbes

- Up to 5-7 g/L glucose accumulates in spent fungal cultures
- Both E. coli and S. cerevisiae can grow and divide in spent cultures

Current Targets:

- Develop an anaerobic fluorescent protein to confirm "hand-off" of carbon to the model microbe
 - Flavin-based Mononucleotide Fluorescent Protein (FbFP)

Measure production of n-butanol in an anaerobic co-culture process 1

John Henske

✓ Understudied anaerobes are powerful degraders of crude, non-food lignocellulosic materials

✓ Advances in sequencing technologies make it possible to pinpoint nature's key enzyme cocktails

✓ Natural partnerships between anaerobes can accelerate crude biomass processing

✓ By leveraging this understanding, we can engineer novel, stable microbial consortia for targeted value-added production

Acknowledgements

Broad Institute:

Prof. Aviv Regev

O'Malley Lab:

Dr. Kevin Solomon Dr. Charles Haitjema Dr. Dawn Thompson Sam Purvine **Dr. Jessica Sexton** Dr. Monica Rieth Dr. Susanna Seppala Nikki Schonenbach Jennifer Guerrero John Henske Sean Gilmore Justin Yoo

Undergraduates: Josie Tressel Elisa Ovadia Natalie Banakis Erich Brodbeck Sarah Maxel Wen-Kang Chou

Diego Borges-Rivera Dr. Scott Baker Harper Adams (UK): Dr. Mike Theodorou

Univ. of Delaware: Prof. Kelvin Lee Dr. Leila Choe

USDA: Dr. Paul Weimer Chris Odt

Verrill Farm Santa Barbara Zoo

JGI: Dr. Igor Grigoriev Charlotte Abrahamson Dr. Kerrie Barry

Dr. Andrzej Joachimiak Dr. Gyorgi Babnigg NREL: Dr. Steve Decker Dr. Mike Himmel Larry Taylor Michael Resch MIT: Prof. Kristala Prather

PNNL:

Dr. Aaron Wright

Argonne NL:

