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Recalcitrant Biomass Hinders Production
of Valuable Products from Cellulose
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Purified cellulases
(i.e. from T. reesi, A. niger)

Rubin, E. M. Nature 454 (2008) 841- 845.



» Several microbiomes degrade
biomass

» Anaerobes are promising
understudied microbes

» They populate the guts of animals,
regulating immune function, nutrition,
and other functions

» Each microbe has a unique “job”
within the community
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_ _ Life Cycle of an Anaerobic Fungus
O’'Malley MA, Theodorou MK, Kaiser CA. Environmental Progress, 31(1): 37-46 (2012).



UCSB

Objectives ——

Overall Goal: Accelerate the development of renewable
lignocellulosic biofuels and value-added products

Approach: Learn from nature to engineer cellulases and
anaerobes with novel functions

» |solate gut microbes from their native microbiomes and
integrate ‘'omics’-based tools to understand function

» Engineer anaerobic consortia for bioprocessing



Finding Fungi in the Muck...

Fecal materials from
Santa Barbara Zoo

Piromyces'sp:fiin Neocallimastix sp S3

Roll tube isolation of

Anaeromyces sp S4 . .
- unique fungal strains
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| Characterize biomass-
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'Neocallimastix sp G1
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Fungal Isolates Exhibit Substrate
Preference in Batch Culture

> Fungi were extracted from a horse named “Finn” from Verrill Farm (Concord, MA)
» Fungal isolate renamed Piromyces sp finn and supported on reed canary grass

» Full growth cycle is seen in 5 — 6 days

> Active growth is characterized by fermentation gas accumulation

» Pressure accumulation allows substrate preference to be determined
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Famous Gut Fungi
(Be careful what you wish for...)

fos Angeles Times
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Horse manure yields secret to ethanol fuel

April 11, 2013 | By Geoffrey Mohan

— Email [_]Share g +1/< 0 W Tweet O

Michelle O'Malley knows good horse poop when she sees it.

ile at MIT, the chemical engineer scooped up some
manure from Finn, a grass-fed horse at a sustainable farm
in Concord, Mass.

That offal has led to a potential breakthrough in turning
grasses and nonfood crops into an alternative fuel in
attempts to wean motorists from fossil fuels and stem man-
made climate change.

A UC Santa Barbara chemical engineer is using fungi froma
horse’s... (John Henske / UC Santa Barbara ) 7



Enzyme Discovery: Why Sequencing a
Genome is Not Enough

transcription translation

DNA
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> Protein

In order to identify the most powerful enzymes, it is critical to examine the
transcriptome from a growing organism.
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Hypothesis: Cellulosic substrates activate transcription of cellulolytic enzymes
and cellulolytic complexes (cellulosomes) while sugars repress transcription



Piromyces sp finn is Rich in Several GH
Enzymes and Dockerin-tagged Proteins
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Piromyces sp finn GH10
B. dendrobatidis

A. nidulans

M. grisea

N. crassa

T. reesei

P. chyrsosporium

Gut fungi are rich in polysaccharide
deacetylases, —glucosidases (GHS5,
GH9), and endoxylanases (GH10, GH11)

Sequencing reveals hundreds of
new enzymes within one strain!




UCSB

Objectives ——

Overall Goal: Accelerate the development of renewable
lignocellulosic biofuels and value-added products

Approach: Learn from nature to engineer cellulases and
anaerobes with novel functions

» |solate gut microbes from their native microbiomes and
integrate ‘'omics’-based tools to understand function

» Engineer anaerobic consortia for bioprocessing
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Anaerobic Syntrophy: Controlling H2

and CH4 Production
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Metabolism of anaerobic fungi and
methanogens is linked

Products depend on the microbes
present in a culture

Fungi — acetate, CO2, H2
Fungi+Methanogens — CO2, methane
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Accelerating Biomass Breakdown
through Anaerobic Co-culture

60 I 1 I T T T

@® Fungi

o A Fungi + Methanogen

% 50 | 9 9 A m
A

2 A

@ A

5 40 |

g i

| =

o 30 {

3 1 - *

3 o®

= 20} °

£ booe

8 10 | ..

< ,.‘. ®

o '

1 1 | 1
0 20 40 60 80 100 120 140
Time (hr)

» Fungal/methanogen co-cultures accelerate biomass breakdown
» Metabolic underpinnings of the interaction are unknown
» Potential applications:

» Synthetic systems for biogas production

» Microbiome engineering to control carbon cycling
12
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Transfer enzymes to model Develop new genetic
microbe for Consolidated engineering strategies to
Bioprocessing control gut fungi

\ /

Combine microbes in
synthetic co-culture



“*Compartmentalize” Biomass Breakdown and UCSB
Product Conversion with Two Microbes ————

Goal: Metabolically link a model facultative anaerobe to released fungal sugars.

Gut Fungi Yeast/E. coli
o £y
’ OOH n /\OH
WML Isaccharification OH -
" i Fermentation P
OH
' Sugar Commodity chemicals

v Gut fungi produce more sugars than they need to grow and divide
v" Model microbes like yeast and E. coli are easy to metabolically engineer
v" “One pot” strategy to convert hydrolyzed sugars into value-added chemicals
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“Compartmentalize” Biomass Breakdown and UCSB

Product Conversion with Two Microbes ————
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Summary and Perspectives ——

v Understudied anaerobes are powerful degraders of crude,
non-food lignocellulosic materials

v Advances in sequencing technologies make it possible to
pinpoint nature’s key enzyme cocktails

v Natural partnerships between anaerobes can accelerate
crude biomass processing

v By leveraging this understanding, we can engineer novel,
stable microbial consortia for targeted value-added production
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