Water Reuse in the Petroleum Industry

Jim Myers, P.E. Chevron

Why Water Reuse?

Thirsty Planet

• World-wide Water Shortages

Save Money/Save Energy/Sustainability

- Produce More Water Than Oil
- Water Treatment Influences Profitability
- Water Companies in Denial

Do More Than Just Check the Environmental Social Impact Assessment (ESIA) Boxes

- Environmental Stewardship
- Community Outreach
- Environmental Education
- Sustainability

Water Reuse Outline

Introduction to Water Reuse

- Water Sources
- Treatment
- Reuse Standards
- **Case Examples**
 - Applications
 - Upstream
 - Downstream

Future of Water Reuse

- Ideas to Go
- Barriers and Fixes

Water Reuse Opportunity

Brief History of Petroleum Industry

- Kerosene replaces whale oil
- Light bulb replaces kerosene
- Fuel oil replaces coal in ships
- Crude refined into gasoline and lube oils
- Fertilizer and pharmaceuticals
- Water usually increases with age of field
- 0 to >100 bbl of water for 1 bbl of oil
- 1.3 million tonnes produced water per tonne of hydrocarbons produced

Human Population

6.6 billion September 2007
9 billion 2050
40% short on water by 2050

World-wide Water Shortage

- ■70% earth is covered with water
- 97% saltwater
- ■3% freshwater
- <1% freshwater is readily available</p>
- Scarcity could limit growth

Opportunity for Produced Water Reuse

- Typically produced water is found water
 - not considered a water source
- Convert by-product into an asset
- Reuse water for agriculture
- Grow biofuels
 - Sequester carbon

Convergence of Petroleum Industry, Water Shortage and Human Population

Water Sources

Distribution of Earth's Water Freshwater 3% Other 0.9% Rivers 2% Surface water Swamps 11% Ground 0.3% water 30.1% Icecaps Saline Lakes and (oceans) 87% Glaciers 97% 68.7% Earth's water Freshwater Fresh surface water (liquid)

Easily accessible freshwater represents less than 0.01% of the earth's water.

USGS, 2005. http://ga.water.usgs.gov/edu/watercyclefreshstorage.html

Projection of Drinking Water Availability

Red/Orange – Scarcity Tan – Stress Blue – Sufficient Water

Gleick, P. H., 1996: Water resources In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823

Water Use Pie Chart

Whyte, Fergal, 2006, "Cities of the Future - Urban Sustainability & Water"

Acre-ft ~ 209 x 209 x 1 ft ~ 325,829 gal

Water Source	Unit Cost	Cost (\$/acre-ft)	
Irrigation Water			
SE Texas		\$10 to 100	
California (wet year)		\$100 to 150	
California (dry year)		\$200 to 500	
US Cities (\$/1000 gal)			
Low (Mississippi)	\$ 0.80	\$ 261	
Average	\$ 2.49	\$ 811	
High (West Virginia)	\$ 5.61	\$ 1,828	
Treated PW (1 bbl)	\$ 0.01	\$ 78	
	\$ 0.02	\$ 155	
	\$ 0.03	\$ 233	
	\$ 0.04	\$ 310	
	\$ 0.05	\$ 388	
	\$ 0.06	\$ 465	
	\$ 0.07	\$ 543	
	\$ 0.08	\$ 621	
	\$ 0.09	\$ 698	
	\$ 0.10	\$ 776	
	\$ 0.20	\$ 1,552	
	\$ 0.30	\$ 2,327	
	\$ 0.40	\$ 3,103	
	\$ 0.50	\$ 3,879	
	\$ 1.00	\$ 7,758	
16 oz Bottled Water	S 1.00	\$ 2.606.630	

Human Population and Water

Population in water-scarce and water-stressed countries, 1995-2050

Water Reuse PFD

- Simple as A-B-C, 1-2-3 or "1st name, middle name, last name"
 - Lots of Water Sources
 - Produced Water, Refinery Wastewater, Marketing Terminal Water, Ground Water, Storm Water, Parking Lot Runoff
 - Plenty of off-the-shelf Treatments
 - Unlimited Supply of Applications

Typical Water Treatment PFD

Typical Produced Water Treatment PFD

1st Step in Design is to Create a Series of PFDs.

Water Treatment Technologies

Wide Selection – One Size Does Not Fit All

Water Treatment G Function	rouped by	Comment
Primary Treatment- Oil/Water Separator- CPI*- DAF/DNF*- Clarifier- Treatment Wetland	API* PPI* IAF* Hydrocyclone	Gravity settling of solids heavy than water. Float oils lighter than water. Entrain oil with air/gas bubbles. Use density differences to remove solids and oils.
Secondary Treatment - ASTU* - S - Facultative Lagoon - F - Aerated Lagoon - F - Treatment Wetland - F - Trickling Filter - F	SBR* RBC Anaerobic Filter MBR* GAC*	Biological treatment uses micro-organisms to consume organic compounds in an ambient temperature combustion reaction. Some of the treatments are energy intensive with small physical footprints. Others are not energy intensive but have large physical footprints.
Tertiary Treatment - Activated Carbon - F - Chlorination - C - Chemicals (FeCl, O3, H20 - Treatment Wetland	Filtration UV* O2)*	Polishing treatments remove the refractory compounds by physical, chemical and biological means.
Salts (desalting) - RO* - - ED* - - Freezing -	FO* NF* UF*	Salt removal is typically to meet irrigation water standards (EC/TDS/salinity). Some of the membrane technologies require pre- treatment (solids removal) to avoid membrane fouling.

Water Reuse Applications Find Out What Local Stakeholders Need

Category	Typical Application
Agriculture	Crop irrigation, Commercial nurseries
Livestock	Cattle, Sheep, Pigs, Chickens, Waterfowl
Aquaculture	Fish, Shrimp, Frogs, Bait
Silviculture	Tree farming
Landscape Irrigation	Residences, Golf courses, Parks, Cemeteries, Freeway medians, Greenbelts, School yards
Industrial Recycling and Reuse	Boiler feed water, Fire protection, Cooling tower, Process water, Manufacturing, Vehicle washing, Dust control
Groundwater Recharge	Groundwater replenishment (water banking), Salt water intrusion control, Subsidence control
Recreation	Lakes, streams and ponds, Snow making
Wildlife Habitat	Marsh restoration, Habitat enhancement, Fisheries
Nonpotable Urban Use	Fire protection, Air conditioning, Toilet flushing
Potable Use	Blending in water supply reservoirs, Blending in groundwater, Direct pipe to pipe water supply

Brief Overview on Water Reuse Standards Pick and Choose to Match Application

Reference	Category/Comment
Health Guidelines for Use of Wastewater for Agriculture and Aquaculture by WHO (1989)	Focus on helminth removal
Guidelines for Water Reuse by USEPA (1992)	Focus on municipal water
Water Reuse ¹³ (2007)	Compilation of municipal and agricultural standards
Water Encyclopedia ¹⁴ (2007)	Compilation of water standards
USA State Regulations on Water Reuse	Most have USEPA like standards
Forestry Standards (several sources & university papers)	Trees tend to tolerate lower quality water than other plants
Fishery Standards (several sources & university papers)	Focus is the taste of fish in commercial fish farming operations
AB (Alberta) Canada	Comprehensive lists including treatment technologies

Water Reuse Analytical Testing Parameters for Irrigation – Salt Focus

		Degree of Restriction on Use				
Irrigation parameter	units	None	Slight to Moderate	Severe		
		Salinity				
EC	dS/m	<0.7	0.7-3.0	>3.0		
TDS	mg/L	<450	450-2000	>2000		
Sodicity						
SAR, 0-3 3-6 6-12 12-20 20-40 Specific Ion Toxicity Sodium (Na) Surface irrigation	SAR mg/l	and EC ≥0.7 ≥1.2 ≥1.9 ≥2.9 ≥5.0	0.7-0.2 1.2-0.3 1.9-0.5 2.9-1.3 5.0-2.9 3-9 >70	<0.2 <0.3 <0.5 <1.3 <2.9 >9 >350		
Sprinkler irrigation Chloride (Cl) Surface irrigation Sprinkler irrigation Boron (B)	mg/L mg/L mg/L mg/L	<140 <100 <0.7	140-350 >100 0.7-3.0	>3.0		
Miscellaneous effects						
Nitrogen (total N) Bicarbonate (HCO ₃) (overhead sprinkling only) pH	mg/L mg/L s.u.	<5 <90	5-30 90-600 Normal range 6-5-	>30 >500		
Residual chlorine (overhead sprinkling only)	mg/L	<1.0	8.4 1.0-5.0	>5.0		

EC – Electrical Conductivity TDS – Total Dissolved Solids SAR – Sodium Adsorption Ratio

Petroleum Industry Water Reuse Case Examples

Case	Treatment	Reuse	Comment
California Produced Water ³	Oil/Water Separation, Walnut Shell Filter, Cooling Pond	Agriculture	Chemical and mechanical treatment. Small footprint. Reused water grows >40 crops.
California Produced Water	Oil/Water Separation, Cooling, RO, CTW	Agriculture	RO for salt removal to meet irrigation water standards. Reused water recharges irrigation aquifer.
California Produced Water Demonstration Wetland	Oil/Water Separation, Walnut Shell Filter, Cooling Pond, Treatment Wetlands	Agriculture	Test program capturing data from multiple cells, plant species, planting densities and construction costs.
Ohio Closed Refinery Storm & Ground Water	Oil/Water Separation, GAC, Pond, CTW	Wildlife	Wetland is winning wildlife awards (pollinator and waterfowl). WHC certified wildlife management plan.
Kansas Refinery Wastewater	Oil/Water Separation, ASTU, Facultative Lagoon, CTW	Wildlife	Gravity fed CTW. Pump once. Let gravity do the rest. Large wetland is attracting wildlife use. IOGCC award. WHC certified.
Wyoming DOE CRADAs Pilot Studies	Oil/Water Separation, Cooling, Facultative Lagoon, CTW	Wildlife Agriculture Aquaculture	Series of pilot CTW studies. Reused water irrigates a normally dry stream creating grazing habitat for mule deer and elk.
Far East Produced Water Feasibility Study	Oil/Water Separation, Cooling Pond, CTW	Agriculture Aquaculture Silviculture	Several applications possible. Lack of infrastructure makes water hand-off challenging.
Africa Produced Water Feasibility and Pilot Studies	Oil/water Separation, Cooling Pond, CTW	Agriculture Livestock	Several applications possible. Lack of infrastructure makes water hand-off challenging.

RO – Reverse Osmosis CTW – Constructed Treatment Wetland GAC – Granular Activated Carbon ASTU – Activated Sludge Treatment Unit DOE – Department of Energy CRADA – Cooperative Research and Development Agreement

Water Reuse Case Example Refinery WWTP PFD

Refinery Wastewater	→	Primary Treatment	 →	Secondary Treatment		Tertiary Treatment	→ Treate Water	
FORM	Oil/\	Water Separati	on	Activated Slu	dge	Treatmen	it	
	Solic	Solids Removal		Facultative La	cultative Lagoon			
FUNCTION	INCTION Removal of Oil and		Removal of Water		Removal	Removal of WSO		
	Solic	ds		Soluble Organic		and Total		
				Compounds (WSO)) Suspende	d Solids	
						(TSS)		
OBJECTIVE	Setu	ip for Biologica	al	Meet Discharge		Meet Discharge Meet Disc		charge
	Trea	tment		Limits		Limits		
						Provide V	Vildlife	
						Habitat		

Water Reuse Case Example Refinery Wastewater Treatment Wetland

- 90-acre Site in Mid-West
- Former Soybean Field
- 2 mgd Average Flow
- Multiple Cells
- Parallel or Series Flow
- Wastewater and Wildlife Balance
 - W-ditches, 6:1 & 4:1 Levees, Gravel/Grit, Hedgerow/Windbreak, Nesting Boxes, Biodiversity Increase (60 to 250 species)
- Interstate Oil & Gas Compact Commission (IOGCC) and Wildlife Habitat Council (WHC) Award

Refinery Water Reuse Example Aerial View of Treatment Wetland

Refinery Water Reuse Example Mallard Landing on Cell Nos. 4 and 5

Water Reuse Case Example Department of Energy (DOE) Produced Water Wyoming

 3 in Operation in the Western US

Economics Good

Wildlife Benefits Better

Discharge Limits Met

DOE Wyoming Produced Water Reuse Case Example Produced Water WWTP PFD

Produced Water	→ Primary Treatment	Secondary Treatment	→ Tertiary Treatment → Treated Water
FORM	Cooling Tower	Facultative	Treatment Wetland
	Oil/Water Separation	Lagoon	
	Solids Removal		
FUNCTION	Water Cooling	Water	Removal of WSO
	Removal of Oil and	Cooling	
	Solids		
OBJECTIVE	Meet Discharge Limits	Setup for	Meet Discharge Limits
	Exclude Wildlife (nets)	Wetland	Water Reuse for Wildlife

DOE Wyoming Produced Water Reuse Beneficial Reuse for Wildlife

Water Reuse Ideas to Go Water Reuse Justification Kit

Economics

- CAPEX
- OPEX
- **GHG Emission Reduction**
 - CO2, NOx, SOx, CO, PM, Energy Usage
 - Soil Carbon Sequestration

ESIA

- Environmental
- Social
- Health

Business Development

- Political
- Regulatory
- Zero Water Footprint

Water Reuse Ideas to Go

Water Reuse Technology PFD

PFD – Process Flow Diagram FWKO – Freshwater Knockout

Water Reuse Ideas to GO Produced Water Reuse Evaluation PFD

PFD – Process Flow Diagram

Water Reuse Barriers

Barriers and Fixes

- Barrier risk aversion and "we have never done it that way before"
- Fix "Ask them what their 2nd answer is", education, economic evaluations, pilot studies, risk assessments and ESIA.
- Barrier -1st to be 2nd to use a new technology mind set
- Fix Repackage off-the-shelf technologies and use water reuse best management practices (BMPs).
- Barrier Regulations do not encourage Water Reuse
- Fix Help change the regulations to benefit local stakeholders (farmers, ranchers, municipalities, etc).
- Barrier TMI overload and analysis paralysis
- Fix KISS principle (water source \rightarrow treat \rightarrow reuse)

Water Reuse Future

Water Reuse Train Has Left the Station

- Voluntary set your own terms
- Involuntary do what you are told
- **Regulations Encouraging Water Reuse**
 - Incentives and Penalties

Compilation of Water Reuse Standards Regional Water Banks for Trading Water Beg, Borrow and Steal BMPs from Existing Water Reuse Projects

Corporate Metrics Reporting Water Reuse

Water Reuse Summary What Does Water Reuse Do?

140,000 bwpd Produced Water

44 hectare (108 acre) Treatment Wetland (polishing treatment step)

890 hectare (2200 acre) Farm Irrigated with 0.9 m/yr (3 ft/yr) water

5,000 to 10,000 or more People Fed

Corn - 220,000 bu/yr (5,600 tonne/yr), Peanuts - 200,000 bu/yr (3,000 tonne/yr), Sorghum - 180,000 bu/yr (4,600 tonne/yr), Beef - 1100 cow/yr (280 tonne/yr) or Chicken – 880,000 chicken/yr (1,600 tonne/yr)

5,600+ tonne Food

Acronym List

ASTU – ACTIVATED SLUDGE TREATMENT UNIT **API – AMERICAN PETROLEUM INSTITUTE** CPI – CORRUGATED PLATE INTERCEPTOR **PPI – PARALELL PLATE INTERCEPTOR** DAF – DISSOVLED AIR FLOTATION DNF – DISSOLVED NITROGEN FLOTATION IAF – INDUCED AIR FLOTATION **RBC – ROTATING BIOLOGICAL CONTACTOR RO – REVERSE OSMOSIS** FO – FORWARD OSMOSIS **NF – NANO-FILTRATION UF – ULTRA-FILTRATION ED – ELECTRODIALYSIS** SBR – SEQUENCING BATCH REACTOR PFD - PROCESS FLOW DIAGRAM MBR – MEMBRANE REACTOR GAC – GRANULAR ACTIVATED CARBON UV – ULTRAVIOLET O3 - OZONEFeCI – FERRIC CHLORIDE H2O2 – HYDROGEN PEROXIDE WWTP-WASTEWATER TREATMENT PLANT EC – ELECTRICAL CONDUCTIVITY TDS – TOTAL DISSOLVED SOLIDS ESIA – ENVIRONMENTAL SOCIAL IMPACT ASSESSMENT **GHG – GREENHOUSE GASES OPEX – OPERATIONAL EXPENSE CAPEX – CAPITAL EXPENSE** USEPA – UNITED STATES ENVIONMENTAL PROTOTECITON AGENCY SAR – SODIUM ADSORPTION RATIO WHO - WORLD HEALTH ORGANIZAITON

CO2 – CARBON DIOXIDE **NOx - NIRTOUS OXIDES** SOx – SULFUR OXIDES PM – PARTICULATE MATTER **BMP – BEST MANAGEMENT PRACTICE** TMI – TOO MUCH INFORMATION **KISS – KEEP IT SIMPLE STUPID** CTW – CONSTRUCTED TREATMENT WETLAND **CRADA – COOPERATIVE RESEACH AND** DEVELOPMENT AGREEMENT **IOGCC – INTERSTATE OIL & GAS COMPACT** COMMISSION WHC – WILDLIFE HABITAT COUNCIL WSO – WATER SOLUBLE ORGANIC COMPOUNDS **PW – PRODUCED WATER** NEBA – NET ENVIRONMENTAL BENEFIT ANAYLYSIS