Availability of Models to Estimate Greenhouse Gas Emissions & Carbon Footprint of Water Reuse Facilities

presented at:

AIChE Industrial Water Use and Reuse Workshop: April 30 - May 1, 2013

James R. Mihelcic, PhD, BCEEM University of South Florida, Tampa jm41@usf.edu

[&] Qiong Zhang, PhD; Mark V. Santana; Pablo K. Cornejo; Andrea Rocha, PhD; Sarah Ness (Department of Civil and Environmental Engrg, University of South Florida, Tampa) & David R. Hokanson, PhD, PE, BCEE (Trussell Technologies, Inc., Pasadena, CA)

What also drives Water Reuse?

Ē

Learning Objectives

- Understand goal of our recent study for the WateReuse Foundation
- Explain difference between Embodied Energy, GHG Emissions, Carbon Footprint, and direct and indirect energy/emissions
- Understand what influences magnitude of CO₂ emissions and carbon footprints associated with water reuse
- Apply eGRID to calculate GHG emissions and carbon footprint for energy use from purchased electricity
- Be aware of available models to estimate GHG emissions and carbon footprint
- Differentiate between carbon footprint estimated using two models

Goal of Study we just completed for the WateReuse Foundation

- provide assistance to those who employ water reuse and desalination in estimating GHG emissions and carbon footprint
- recommend accessible models to utilities to provide estimations of GHG emissions and carbon footprint

Mihelcic, J.R., Zhang, Q., Hokanson, D.R., Cornejo, P.K., Santana, M.V., Rocha, A.M., Ness, S. J. (2013). "Feasibility Study on Model Development to Estimate and Minimize Greenhouse Gas Concentrations and Carbon Footprint of Water Reuse and Desalination Facilities," Project Report 10-12, 148 pages, WateReuse Research Foundation, Alexandria, VA.

Energy Consumption (e.g., direct energy) of Water Reuse and Desalination

Source: Lazarova, Choo, and Cornel 2012

Lets Define Carbon Footprint, Direct and Indirect GHG Emissions and Embodied Energy

- A carbon footprint is defined as the total greenhouse gas emissions (reported in carbon equivalents) that are associated with a product, service, company, or other entity such as a household or water treatment plant. It consists of direct and indirect greenhouse gas emissions.
- Direct emissions are from sources owned or controlled by the reporting entity. Indirect emissions are a consequence of activities of the reporting entity, but they occur at other sources that are owned or controlled by another entity (Greenhouse Gas Protocol, 2012).

from Mihelcic, J.R., J.B. Zimmerman, *Environmental Engineering: Fundamentals, Sustainability, Design*, 2nd Edition, John Wiley & Sons, New York, 2013.

Direct & Indirect Energy when Reporting Greenhouse Gas Emissions and Carbon Footprint

GHG Protocol Corporate Accounting and Reporting Standard

Life Cycle Assessment - Energy Impact

- LCA is a quantitative tool, which estimates the environmental impact of a system over its lifetime (EPA, 2006, Life Cycle Assessment: Principles and Practice)
- Embodied Energy lifecycle energy consumption
- Carbon Footprint lifecycle greenhouse gas emissions (GHGs)

Impact Category	Contributors				
Embodied	N/A	Direct Energy	Indirect energy: a)		
спегду		(electricity)	transport		
			materials to the facility, b) waste		
			disposal, c)		
			employee business		
			Indvei.		

CO₂ Emissions and Carbon Footprint of Water Reuse

Change in Emissions and Footprint with Capacity (per m3 of water treated)

Capacity (MGD)	CO ₂ Emissions (kg CO ₂ /m ³)	Capacity (MGD)	Carbon Footprint (kg CO ₂ eq/m ³)
0.8 0.2–1.1		0.07, 0.62	0.1–0.9
		1.3, 4.5, 5.6	0.5–1.2
13	0.4–0.8	10.6, 11.7, 26	0.1–2.4

Carbon footprint ranges from 0.1 to 2.4 kg CO₂eq/m³

Carbon footprint per m^3 water produced appears to increase with increasing plant capacity (0.07 – 26 MGD)

Source: Mihelcic, J.R., Zhang, Q., Hokanson, D.R., Cornejo, P.K., Santana, M.V., Rocha, A.M., Ness, S. J. (2013). "Feasibility Study on Model Development to Estimate and Minimize Greenhouse Gas Concentrations and Carbon Footprint of Water Reuse and Desalination Facilities," Project Report 10-12, 148 pages, WateReuse Research Foundation, Alexandria, VA. Change with Energy Mix - Facilities using renewable energy or energy mix with high portion of renewable energy have relatively low carbon footprint.

Energy	CO ₂ Emissions	Energy Mix	Carbon Footprint (kg CO ₂ eq/m ³)
Mix	(kg	Europe	1. 3 –1.9 ¹
	$CO_{2}/m^{3})$	Israel	2.1
Europe	0.8-1.0	California	0.5-1.0
France	0.23-0.27	South Africa	0.1-0.7
New South	0.4-0.8	Spain	-2.1-0.8
Wales		United States	1.7
Norway	0.14-0.16	Photovoltaic	0.2
Dortugal	0.14 0.10	Solar Thermal	0.1
Fortugal	0.7-1.1	Low Emissions ²	0.9
		¹ Based on Europe 2020 mix, which is compose	ed of 35% renewable electricity production
		² Low emissions refers to "a mix of renewable	energy and current California sources"

Source: Mihelcic, J.R., Zhang, Q., Hokanson, D.R., Cornejo, P.K., Santana, M.V., Rocha, A.M., Ness, S. J. (2013). "Feasibility Study on Model Development to Estimate and Minimize Greenhouse Gas Concentrations and Carbon Footprint of Water Reuse and Desalination Facilities," Project Report 10-12, 148 pages, WateReuse Research Foundation, Alexandria, VA.

(Stokes and Horvath, 2009).

Energy Mix: Emissions and Generation Resource Integrated Database (eGRID)

- eGRID provides conversion factors that allow a user to convert electricity usage (reported as MWh or GWh) to lbs of CO2, CH4, N2O, and CO2e.
- What is unique about eGRID is it makes this conversion using the energy mix that is unique to a particular region of the U.S. This is because the greenhouse gas emissions associated with electricity generation from consuming a particular amount of electricity differs around the country. This is based on a region's energy mix used to produce electricity that can consist of coal, natural gas, nuclear, hydro, biomass, wind, and solar.

Comparison of Greenhouse Gas Emission Rates in U.S. and several regions (data from eGRID2007 version 1.1, year 2005 data).

See http://www.epa.gov/egrid for data for all 26 U.S. subregions.

eGRID subregion name	CO ₂ (lb/MWh)	CH ₄ (lb/GWh)	N ₂ O (lb/GWh)	CO ₂ e (lb/MWh)
WECC California	724.12	30.24	8.08	727.26
SERC Virginia /Carolina	1,134.88	23.77	19.79	1,141.51
SERC Midwest	1830.51	21.15	30.50	1,840.41
FRCC all (Florida)	1,318.57	45.92	16.94	1,324.79
U.S.	1,329.35	27.27	20.60	1,336.31

Relating Individual Greenhouse Gas Emissions to Carbon Footprint

Greenhouse Gases (GHG)	GHG Emissions (kg)	Global Warming Potential*	Carbon Footprint (kg CO ₂ equivalent)
CO2	100	1	100
CH4	10	25	250
N ₂ O	1	298	298

*IPCC Fourth Assessment Report 100-year time horizon

Total Carbon Footprint = 100 + 250 + 298 = 648 kg CO2 equivalent

eGRID does not account for line

losses

- eGRID is based on generation of electricity and does not account for line losses from the point of generation to the point of consumption.
- Line losses range from 2.795% in Alaska, 3.691% in Hawaii, 5.333 in the Western U.S., 6.177% in Texas, and 6.409% in the Eastern U.S. (with a U.S. average of 6.179%).
- If a user wants to account for line losses in the estimation of greenhouse gas emissions, they would have to divide the eGRID generated greenhouse gas emissions by [1 – (percent line losses/100)] to determine the total greenhouse gas emissions that result from consumption of electricity

from Mihelcic, J.R., J.B. Zimmerman, Environmental Engineering: Fundamentals, Sustainability, Design, 2nd Edition, John Wiley & Sons, New York, 2013.

Example: Determine Carbon Footprint from Electricity Consumption Data

 Assume you own a building in Virginia or the Carolinas and you consume 11,000 kWh of electricity per year for heating, cooling, lighting, and operation of electronics and appliances. What is the amount of direct greenhouse gas emissions associated with CO2, CH4, and N2O (and the overall carbon footprint) for operating the building? Ignore line losses in your calculations.

from Mihelcic, J.R., J.B. Zimmerman, Environmental Engineering: Fundamentals, Sustainability, Design, 2nd Edition, John Wiley & Sons, New York, 2013.

Problem: 11,000 kWh of electricity per year. What is the amount of direct greenhouse gas emissions associated with CO2, CH4, and N2O (and the overall carbon footprint) for consuming this energy? Ignore line losses in your calculations.

eGRID subregion name	CO ₂ (lb/MWh)	CH ₄ (lb/GWh)	N ₂ O (lb/GWh)	CO ₂ e (lb/MWh)
WECC California	724.12	30.24	8.08	727.26
SERC Virginia/ Carolina	1,134.88	23.77	19.79	1,141.51
SERC Midwest	1830.51	21.15	30.50	1,840.41
FRCC all (Florida)	1,318.57	45.92	16.94	1,324.79
U.S.	1,329.35	27.27	20.60	1,336.31

Solution – Estimate GHG Emissions

Using the conversion factors provided by eGRID (and listed in previous table for the sub-region of Virginia and the Carolinas), you can determine that the emissions of specific greenhouse gas emissions associated with operating this building as: 12,484 lb CO2, 261 lb CH4, and 218 lb N2O. There are 1,000 kW in 1 MW and 1,000,000 kW in 1 GW. These emissions do not account for line losses which are 6.409% in the Eastern U.S. To account for line losses, divide these eGRID generated emission values by (1-6.409/100).

from Mihelcic, J.R., J.B. Zimmerman, Environmental Engineering: Fundamentals, Sustainability, Design, 2nd Edition, John Wiley & Sons, New York, 2013.

 You can determine the carbon footprint by one of two methods. The easiest is to multiply the electricity consumption of 11,000 kWh by the CO2e conversion factor of 1,141.51 lb CO2e/MWh provided by eGRID (and listed in previous Table).

> 11,000 kW × 1,141.51 lb CO2e/MWh × MW/1,000 kW = = 12,556 lb CO2e

This results in a value of 12,556 lb CO2e.

Problem: 11,000 kWh of electricity per year. What is the amount of direct greenhouse gas emissions associated with CO2, CH4, and N2O (and the overall carbon footprint) for consuming this energy? Ignore line losses in your calculations.

eGRID subregion name	CO ₂ (lb/MWh)	CH ₄ (lb/GWh)	N ₂ O (lb/GWh)	CO ₂ e (lb/MWh)
WECC California	724.12	30.24	8.08	727.26
SERC Virginia/ Carolina	1,134.88	23.77	19.79	1,141.51
SERC Midwest	1830.51	21.15	30.50	1,840.41
FRCC all (Florida)	1,318.57	45.92	16.94	1,324.79
U.S.	1,329.35	27.27	20.60	1,336.31

Solution – Estimate Carbon Footprint – Method 2

- You can find the solution in a longer manner, summing the contribution from each of the three greenhouse gases accounted for by eGRID, using the GWPs listed in Table.
- 11,000 kW x 1,134.88 lb CO2/MWh x MW/1,000 kW = 12,484 lb CO2 = 12,484 lb CO2e
- 11,000 kW x 23.77 lb CH4/GWh x GW/106 kW = 0.26 lb CH4 x 25 lb CO2e/lb CH4 = 6.5 lb CO2e
- 11,000 kW x 19.79 lb N2O/GWh x GW/106 kW = 0.22 lb CH4 x 298 lb CO2e/lb N2O = 65.5 lb CO2e
- The total GHG emissions in CO2e are the sum of these three values and equals 12,556 lb CO2e.
- Note the large amount of CO2 emissions from electricity generation here compared to the contribution of CH4 and N2O (even with their higher GWPs). This value is the carbon footprint of the building for one year when only considering direct emissions.
- Remember, these emissions do not account for line losses which are 6.409% in the Eastern U.S. To account for line losses, divide these eGRID generated emission values by [1 - (6.409/100)]. So footprint is now 13,416 lb CO2e

Previous example problem adapted from Rothschild et al., 2009, from Mihelcic, J.R., J.B. Zimmerman, *Environmental Engineering: Fundamentals, Sustainability, Design*, 2nd Edition, John Wiley & Sons, New York, 2013.

 You can now use e-GRID data and your specific electricity bills to determine GHG emissions and carbon footprint associated with your on site energy use.

 How about if you wish to consider emissions that consider the whole life cycle?

Available Models to Estimate GHG Emissions and Carbon Footprint

Practical Implications For Industry

- Limiting factor: data currently collected by industry
- Recommendation on data collection (at minimum)
 - information on electricity providers
 - the amount of water pumped and produced
 - facility-wide electricity usage
- Model development is needed
 - a user-friendly and robust model
 - applicable to different geographical regions
 - have an option that would require different levels of sophistication related to required input parameters

Method Used in Available Estimation Models

GHG Emission Estimation Method	Description of Methodology	Examples of Models that Fit this Methodology
Traditional LCA	Use process-based inventory	SimaPro, GaBi
Hybrid LCA-based models	Use both process-based and input- output-based inventory	Water Energy Sustainability Tool (WEST), WWEST, and WESTWeb
Specific models for estimating GHG emissions	Uses input parameters specific to user	Johnston Model, Tampa Bay Water Model
Other related models	NOT specifically used to estimate emissions from water reuse facilities, but contain aspects that are applicable	UKWIR Model, UK Environmental Agency Model, CHEApet, Systems Dynamics, GPS-X Model, mCO ₂ , Bridle and BSM ₂ G

Hybrid Models use combination of EIO-LCA and Process-Based LCA

- EIO-LCA relies on national economic input-output (EIO) tables (showing relationship between different sectors of the economy) coupled with environmental impact tables to quantify metrics such as GHG emissions based on a set level of economic activity (i.e., the cost of equipment, pipes, chemicals)
- Process-based LCA is more detailed in that the environmental impacts are based on a specific analysis of the components in the system or product you choose to analyze. Emissions due to production of materials are calculated by EIO-LCA, emissions associated with energy production, transportation, and equipment usage are calculated using Process-Based LCA

Summary of Model Availability

Model Type	Emission Models	Tool Type	Available	Website or Contact Information
LCA-based	SimaPro	Software	Commercially	www.pre.nl
models	Gabi	Software	Commercially	www.gabi-software.com
	SiSOSTAQUA	Software	Commercially	www.simpple.com
Hybrid LCA-	WEST	MS-Excel	Upon request	Dr. Jennifer Stokes at
based				ucbwaterlca@gmail.com
	WWEST	MS-Excel	Upon request	Dr. Jennifer Stokes at
				ucbwaterlca@gmail.com
	WESTWeb	Web-based	Publically	west.berkeley.edu
Specific	Tampa Bay Water	MS-Excel	Upon request	www.tampabaywater.org
models	Johnston Model	MS-Excel	Upon request	Dr. Tanju Karanfil at
				tkaranf@clemson.edu
Other related	CHEApet	Web-based	Publically	cheapet.werf.org
models	UK Environment	MS-Excel	Upon request	enquiries@environment-
	Agency Model			agency.gov.uk
	Bridle and BSM2G	Software	Publically	Author Lluis Corominas at
	Models			lcorominas@icra.cat
	System Dynamics	Software	Commercially	www.iseesystems.com
	GPS-X	Software	Commercially	www.hydromantis.com/GPS-X.html
	Carbon Accounting	MS-Excel	Commercially	www.ukwir.org
	Workbook, 5th version			
	mCO ₂	Software	Commercially	www.mwhglobal.com

Emission Sources Considered in Hybrid LCA and Specific Models

	Hybrid LCA Models			Specific	Models
Emission Sources Considered	WEST	WWEST	WESTWeb	Johnston Model	Tampa Bay Water Model
Material production	Х	Х	Х		
Material delivery	Х	Х	Х		
Electricity consumption	Х	Х	Х	Х	Х
Electricity mix	Х	Х	Х	Х	Х
Fuel use (on-site and fleet vehicles)	Х	Х	Х	Х	
Sludge disposal	Х	Х	Х	X1	
Chemical production	Х	Х	Х	Х	
Direct process emissions		X ²	X2	X1	
Process equipment			X3	X4	
Disinfection processes			Х3	X4	

Applicability of Hybrid LCA and Specific Models

	Hy	brid LCA Mo	dels	Specific Models		
Applicability & Availability	WEST	WWEST	WESTWeb	Johnston Model	Tampa Bay Water Model	
Previously applied to water reuse	Х					
Previously applied to desalination	Х				Х	
Designed for wastewater facilities		Х				
Designed for water facilities				Х		
Designed for regional water supply					Х	
Currently regionally transferable	Х	Х	Х	Х		
Custom, state, and national electricity mix	Х	Х	Х	Х		
Available upon request	Х	Х	Х	Х	Х	

Comparison of WEST and Tampa Bay Models

Output Comparison of Carbon Footprint Using Tampa Bay Water and WEST Models

F 111	Tampa Bay Water Model	WEST Model ¹	% Tampa Bay Water Model	
Facility	CO ₂ eq (kg)/m ³ Produced	CO ₂ eq (kg)/m ³ Produced	of WEST Model Estimate	
Desalinated seawater, membrane pretreatment	1.26	2.40	52%	
Desalinated brackish groundwater	1.20	1.63	74%	
Recycled water	0.53	1.02	52%	

- Tampa Bay Water model: includes only electricity consumption
- WEST model: electricity consumption, fuel use by equipment and vehicles, chemical and material production

Example from: Mihelcic, J.R., Zhang, Q., Hokanson, D.R., Cornejo, P.K., Santana, M.V., Rocha, A.M., Ness, S. J. (2013). "Feasibility Study on Model Development to Estimate and Minimize Greenhouse Gas Concentrations and Carbon Footprint of Water Reuse and Desalination Facilities," Project Report 10-12, 148 pages, WateReuse Research Foundation, Alexandria, VA.

Tampa Bay Water Model

- Developed By Tampa Bay Water
 - Responsible for the extraction, treatment, and sale of water to member jurisdictions in the Tampa Bay metropolitan area
 - Model determines GHG emissions associated with water treatment of its facilities

Tampa Bay Water Model

Model Inputs	Units	Data Source	
Water pumped	(MG/yr)	In-house	
Water produced	(MG/yr)	In-house	
Electricity Use from Pumping	kWh/yr	In-house	
Crossland	MWh	U.S. EPA	
Gross load	used/yr	eGRID or CAM	
CO ₂ emission factors	Tonglan	U.S. EPA	
based on energy mix	TOHS/ yr	eGRID or CAM	
CH ₄ emission factors	Tong/un	U.S. EPA	
based on energy mix	TOHS/ yr	eGRID or CAM	
N ₂ O emission factors	Tons/ur	U.S. EPA	
based on energy mix	10118/ yi	eGRID 2005	
		U.S. EPA data	
Electricity mix	% per source	and utility	
		contacts	

Model Outputs

CO₂ eq, CO₂, N₂O, & CH₄ emissions (lbs/kWh) CO₂ eq, CO₂, N₂O, & CH₄ emissions (lbs/yr) CO₂ eq, CO₂, N₂O, & CH₄ emissions (lbs/MG)

Tampa Bay Water Model

Water Energy Sustainability Tool (WEST)

- Excel-based
 - Obtainable by contacting developers
 - http://west.berkeley.edu/model.php
- WESTWeb Online interface
 - http://west.berkeley.edu/tool.php
- Water and Wastewater Treatment
- Hybrid-Life Cycle Assessment Based
- Calculates: CO₂-eq, NO_x, SO_x, PM₁₀, VOC, CO

WEST

- Composed of Environmental Assessment Methods
 - Economic Input Output (EIO)-LCA
 - Emissions from Materials Production
 - Process-Based LCA
 - Energy Generation
 - Transportation of Resources
 - Equipment Use

Framework of WEST Model

WEST

- The next few slides are to orient you with the WESTweb interface, as it is relatively easy to use.
- The website to access this program will be provided at end of talk. However, the Excel-based version, WEST, can be obtained by contacting the developers.

WEST Web 🜞

Modeling Parameters

Select system ty	pe: Water	-
Units selection:	SI (metric)	•
Enter number of	scenarios:	3 💌
Functional Unit:	1000	(liters)

- Water or wastewater
- Units
- Number of Scenarios
- Scenario Capacities

Annual Water or Wastewater Production

Enter scenario production volume (in liters):

Scenario #	Scenario Name	Annual Scenario Production
1	Desalinated Seaw	3600000000
2	Desalinated Brack	3600000000
3	Recycled Water	3600000000

http://west.berkeley.edu/tool.php#results

Infrastructure

Pipe Length and Material

Would you like to enter detailed data about pipe materials? No 💌

Can include:

- Transport infrastructure information
- Material information (optional
- Processes (optional)

Enter total length (in meters):

	Scenario #1 (meters)	Scenario #2 (meters)	Scenario #3 (meters)	
Supply	3200	4800	1000	
Treatment				
Distribution	1003000	1000000	35000	

Reinforced Concrete Materials

Would you like to enter detailed data about buildings and pre-cast structures? No 💌

Enter total volume of reinforced concrete (in cubic meters):

	Life (years)	Scenario #1 (cubic meters)	Scenario #2 (cubic meters)	Scenario #3 (cubic meters)
 Supply Treatment Distribution 	75			
Due and Frankrish				

Process Equipment

Would you like to enter detailed data about process equipment? No 💌

Process Equipment

Would you like to enter detailed data about process equipment? Yes

Enter the dollars spent (in 2002\$) on process equipment. Only include the purchase price; do not include labor or delivery costs. Legend: 🖛 denotes supply, 🕏 denotes treatment, 🔿 denotes distribution.

Component	Life	← \$ →	+ \$ +
Component	(years)	Scenario 1 (2002\$)	Scenario 2 (2002\$)
Filtration			
Filter Media (Sand or Gravel)	15		
Filter Media (Anthracite or Other Coal Product)	15		
Membranes	7		
General	· · · · · ·		
Pumps	15		
Fans / Blowers	10		
Motors and Generators	15		
Turbines	30		
Metal Tanks	30		
UV Lamps / Lights	3		
Other Industrial Equipment	15		
Electrical	15		
Controls	10		

Enter percentages for each scenario's electricity primary fuel/energy source:

	US Mix
Coal	49.61%
Oil	3.73%
Natural Gas	18.77%
Nuclear	19.28%
Hydro	6.5%
Biomass	1.3%
Wind	0.44%
Solar	0.01%
Geothermal	0.36%
Total	100%

State energy mix can be specified

UTIVEISE

Energy Use

*Use annual values

Enter quantities of energy consumed for each scenario:

Appual Consumption of	+	\$	→	+	\$		+	2	
	Scenario 1		Scenario 2			Scenario 3			
Electricity (MWh)		13680	144000		9360	86400		16200	6840
Natural Gas (MMBTU)									
Gasoline (liters)									
Diesel (liters)									

Treatment Chemical Consumption

lts	Diesel (liters)						
esu	Treatment Chemical Consumption						
p#r	Enter quantities of chemicals used in each sce	nario:					
[hc	L	Inits	Scenario #1	So	cenario #2		Scenario #3
ı/tool.J	pH Adjustment Hydrochloric Acid k Sulphuric Acid k Lime k	g/yr g/yr a/yr	2916000		2340000		
erkeley.edu	Coagulants & Flocculants Aluminum Sulfate k Aluminum Hydroxide k Caustic Soda k Ferric Chloride k Polymers k	g/yr g/yr g/yr g/yr g/yr	14400		612000		1908000
://west.bo	Disinfectants Chlorine k Calcium Hypochlorite k Ozone k Aqueous Ammonia k	g/yr g/yr g/yr g/yr	234000		396000 468000		684000
http	Others Fluorosilicic Acid k Other Chemicals	g/yr \$/yr				,	

WESTWeb Interface - Results

Scenario 3 Results + Recycled Water				GHG	EN
				g CO2e/FU	MJ/FU
RE			⇒	0	0
E	Piping	Pipe	*	-	-
Ň			\rightarrow	1	0
STI			(-	-
FRA	Concrete and Buildings	Concrete and Buildings	4	-	-
NI			\Rightarrow	-	-
			(-	-
	Energy Use	Electricity Natural Gas Equipment Fuels	4	296	4
			\Rightarrow	125	1
				-	-
NO			4	-	-
Ē			⇒	-	-
RA			- 	-	-
B			÷		-
Ŭ		pH Adjustment	*	-	-
		Flocculants / Coagulants	2	15	0
	Chemicals	Disinfectants	2	25	0
		Other	*	-	-
			(0	0
	Infrastructure		*	-	-
			⇒	1	0
5	Operation		(-	-
Z			4	337	5
			⇒	125	1
	End-of-Life		→	-	-
	Scenario 3 Grand Total			464	7

http://west.berkeley.edu/tool.php#results