Panel Presentation on Project Management Principles

Sponsored by PSAIChE and SWE-PNW
October 20, 2010
University of Washington
UW-AIChE, SWE and EWB

Introduction to Panelists

- Ricole Johnson, MBA, PMP | Starbucks Coffee
 Company | Senior Engineer
- Randy Lord | Boeing | 747-8i Insulation
 Blankets Project Manager
- Scott Tavaglione, PE | GE Water & Process
 Technologies | Project Engineer
- Kalan Guiley | Boeing | Guidance, Control and Navigation Engineer, 747-8 High Lift Systems

Presentation Topics

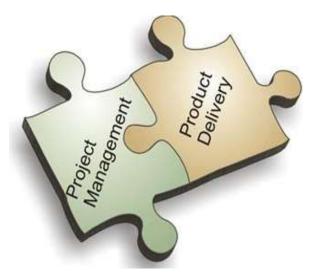
- Ricole Introduction to Project Management Principles
- Randy 15 Questions
- Scott Engineering the Project: Team Roles in Managing Projects
- Kalan PM in Action: Lessons Learned

Introduction to Project Management Principles

Ricole Johnson, MBA, PMP

Senior Engineer

Starbucks Coffee Company, Global Engineering


October 20, 2010 University of Washington

Outline

- Definitions and Assumptions
- Project Management Process
- Project Success Criteria
- IV. 10 Key Principles
- v. Final Thoughts

Definitions and Assumptions

Ref: PMBOK Guide, 4th Ed.

What is a PROJECT?

A **temporary** endeavor undertaken to create a **unique** product, service or result.

What is PROJECT MANAGEMENT?

The **application** of knowledge, skills, tools, and techniques to project activities to meet project requirements.

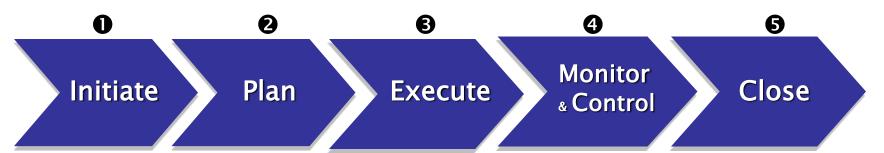
What is a PROJECT MANAGER?

The individual responsible for accomplishing project objectives.

KEY ASSUMPTIONS

- ✓ Consistent for any type of project, across any industry
- ✓ Project alignment with organizational strategy
- ✓ <u>Project Management</u>
 <u>Body of Knowledge (PMBOK)</u>
 accepted global standard

Project Management Delivers Value


Manufacturing
New Product Development
Retail Store Development
Information Technology

Mission

"To inspire and nurture the human spirit - one person, one cup and one neighborhood at a time"

Project Management Process

Ref: PMBOK Guide, 4th Ed.

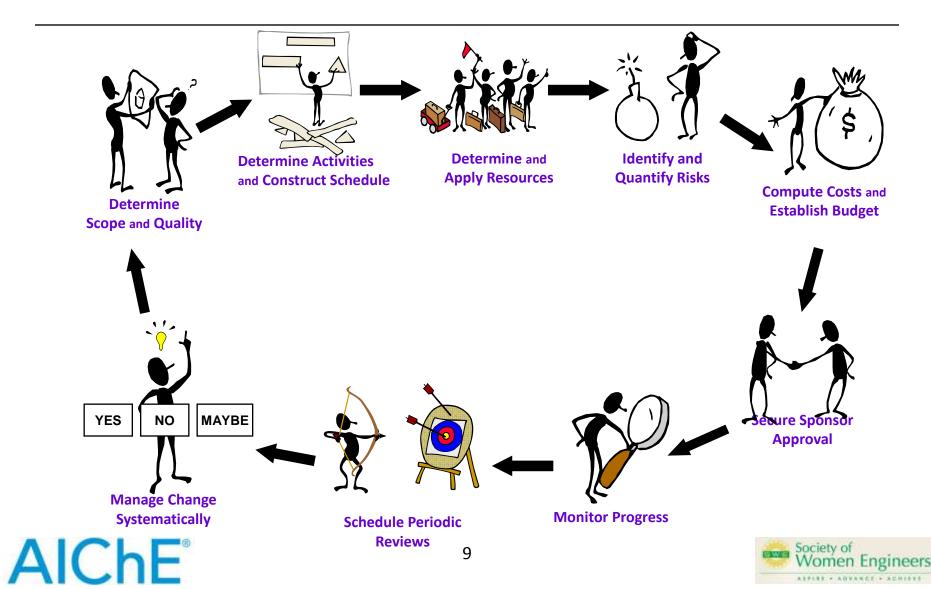
Validate Business Need **Determine Feasibility** Define Scope Define Vision & Mission Develop Project Charter **Identify Stakeholders Identify Team Estimate Resources**

Collect Requirements Create Work Breakdown Create Project Mgmt. Plan Define Roles & Responsibilities | Perform Quality Assurance Establish Schedule Develop Communication Plan Develop Risk Management Plan Escalate Issues with Sponsor Conduct Project Kick-off

Direct Project Work Fulfill Customer Requirements Procure Goods and Services Manage Project Team Establish Budget and Cashflow Manage Stakeholder Expectations Communicate Progress, Risks **Proactively Drive Solutions**

Monitor & Control Project Work Monitor & Control Scope Keep Abreast "Project Pulse" Perform Change Control Check Schedule Status & Measure Variance Check Budget Status & Measure Variance Perform Quality Control Report Project Performance **Monitor & Control Risks**

Wind-down Project Activities Finalize Delivery Validate Customer Acceptance **Summarize Project Achievements** Communicate Lessons Learned Settle Final Budget Numbers **Disband Project Team Archive Project Artifacts** Recognize and Celebrate Success


"Begin with the End in Mind"

Steven Covey, 7 Habits of Highly Successful People

The Project Odyssey

Project Success Criteria

- Finishing the project **ON TIME**
- Maintaining costs within BUDGET
- Achieving QUALITY deliverables within SCOPE

"TRIPLE CONSTRAINTS"

Principle #1

Know Thy Project Management Fundamentals

Principle #2

Thoroughly Understand the Customer's Requirements

Principle #3

Build a Strong Team with Defined Responsibilities

Principle #4

Communicate, Communicate, Communicate

Principle #5

Identify Risks Regularly and Take Steps to Mitigate

Principle #6

Manage Stakeholder Expectations

Principle #7

Write It, Share It, Save It

Principle #8

Be Relentlessly Proactive

Principle #9

Be Comfortable with the Uncomfortable

Principle #10

Celebrate Success

Final Thoughts

- Put principles into practice
- Maintain discipline
- Plan your work, Work your plan!

Thank You

ricole.johnson@starbucks.com 206-318-5188

Resources

pmi.org Project Management Institute
pugetsoundpmi.org PMI Puget Sound Chapter
iil.com International Institute for Learning
cadencemc.com Cadence Management Co.

Panel Presentation on Project Management Principles

15 Questions

Presented by

Randy Lord *Boeing*747-8i Insulation Blankets Project Manager

October 20, 2010

15 Questions

- 1. Why are we doing this?
- 2. Customer?
- 3. What does success look like?
- 4. Scope?
- 5. Sponsor?
- 6. Start/End Dates?
- 7. Schedule?
- 8. Budget?
- 9. Plan?
- 10. Deliverables?
- 11. Critical Path?
- 12. Team Members?
- 13. Action Items?
- 14. Top three Risks/Worries (What could go wrong)?
- 15. Mitigation Plans?

Panel Presentation on Project Management Principles

Engineering the Project: Team Roles in Managing Projects

Presented by

Scott Tavaglione, PE, P. Eng. *GE Water & Process Technologies*Project Engineer

October 20, 2010

Project Engineering

- Definition of Project Engineering Varies by
 - The engineering and project management organization structure
 - The product being produced
 - Level of responsibility and experience

Successful Project Engineering

- Involves creative solutions and problem solving
- Is an endeavor that requires many different technical and interpersonal skill sets.
- Project Engineering is the third major step in the process of assuming more and more responsibility, after Engineer, and Sr. Engineer
- Depending on the organization and its product, the Project Engineer is usually teamed with the Project Manager where the two work as a nucleus or battery for the project technical and commercial success

Successful Project Engineering

- Must be able to communicate and write well, to both internal and external clients
- Must have reasonable knowledgeable of other engineering disciplines' requirements for the product design in order to lead the project development and integration
- Must be able to work with the design team to integrate all the requirements of project

Project Engineering Directives

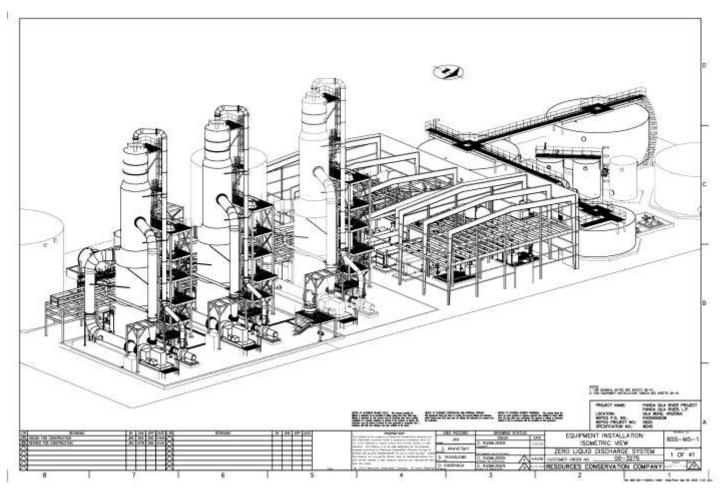
- Obtain a PE license for the state in which you live
- Exercise due diligence with regard to safety in design
- Establish and review with the team all of the chemicals involved in the project and put together a Chemical Plan
- Always keep the PM informed and up to date on design issues, scope creep, spec issues, etc.

The Chemical Plan

	Clearwell Sulfuric		RO Filter Sulfuric		Clarifier Sodium	
	Acid	BC Sulfuric Acid	Acid	BC Sodium Hydroxide		Clarifier Sodium Hypochlorite
Pump Tags	012D911, 012D912 (future spare), 012D913	012D916, 012D917 (spare)	012D914, 012D915 (spare)	012D904, 012D905 (future), 012D903	012D901, 012D902 (future), 012D903	012D961, 012D962 (future), 012D963
Compound/ Additive	93% Sulfuric Acid			50% Sodium Hydroxide		12.5% Sodium Hypochlorite
Grade	Technical Grade			Technical Grade		Technical Grade
Additional Dilution Required ?	no	no	no	no	no	no
Flow Rate (per Pump) from PFD	3.60 gph	3.60 gph	1.08 gph	minimal	38.40 gph	0.60 gph
Delivery Frequency	осо дри			50.10 351.		300 350
Chemical Supplier						
Expected Usage Rate	110.3 lb/hr	55.2 lb/hr	16.5 lb/hr	minimal	979.3 lb/hr	12.0 lb/hr
Expected usage during startup	N/A	N/A	N/A	N/A	N/A	N/A
Expected 1 yr usage	966,300 lbs	483,150 lbs	144,945 lbs	minimal	8,579,043 lbs	105,204 lbs
Expected 1 Month Storage Supply	N/A			N/A		N/A
Refill Totes Required for 1						
Month Storage ¹	N/A			N/A		N/A
CIP Chemical Quantity for cleaning 4 RO trains ²						N/A
CIP Chemical	N/A			N/A		N/A
Drum 3 Month Storage	N/A			N/A		N/A
Price						
Notes	common storage tank			common storage tank		common storage tank
Storage (Tank or Tote)	6,500 gallon storage tank			36,000 gallion storage tank		10, 000 gallon storage tank
Storage (Tank or Tote) Material	coated carbon steel			coated carbon steel		HDPE
Expected Delivery Method	tanker truck			tanker truck		tanker truck

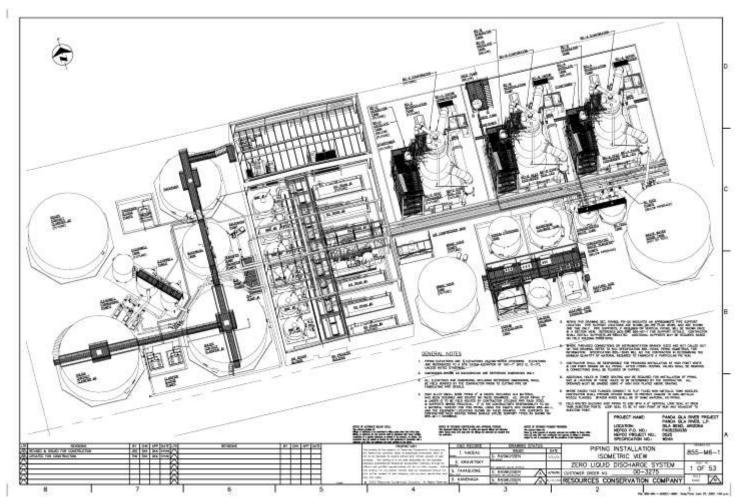
The Chemical Plan

Acceptable Piping Material	Alloy 20	316 SS, PVC, CPVC, Carbon Steel	PVC, CPVC
matorial	, 110, 20	010 00,1 70,01 70,04000.	
Acceptable Gasket Material			
Spill Containment	concrete structure	concrete structure	concrete structure
Chemical			
Description	93% sulfuric acid	50% sodium hydroxide	12.5% sodium hypochlorite
Chemical pH	< 1.0	13-14	12.25 - 13.0
Spec Gravity	1.837	1.529	1.2
Active			
Ingredient(s)	sulfuric acid	sodium hydroxide	sodium hypochlorite
Chemical			
Classification Potential for degas	corrosive, strong mineral acid	corrosive	corrosive, strong oxidizer
at design temp 120			
°F	no	no	yes
Incompatibility	water reactive, strong alkalies, chemically reactive metals (Cu, Al, Zn, Mg - explosive H2 gas released)	zrong acids, chemically reactive metals (Cu, Ai, Zn, Mg -exploseive H2 gas released).	strong mineral acids, ammonia, reducing agents, excessive heat.
Separation Flammable	no	no	no
Haz Mat ID Marker	110	TIO TIO	10
1			
2 3			
4			
1 - Fire Hazard 2 - Health Hazard	0 3	0 3	0 3
3 - Reactivity	2	1	1
4 - Specific Hazard	₩	COR	COR
Observices	Outherita Andria	On diversity the description	On divine I have a ship of
Chemical Name		Sodium Hydroxide	Sodium Hypochlorite
Concentration	93%	50%	12.50%
Chem Formula	H ₂ SO ₄	NaOH	NaOCI

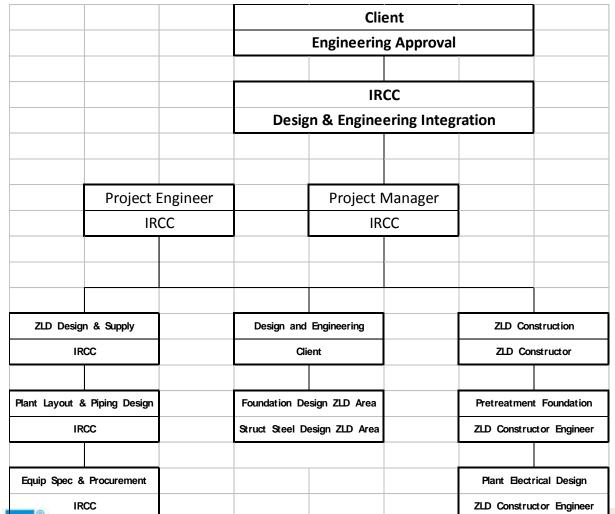


Chemical Plan Elements

- Columnar Layout for each chemical
- List all chemical physical properties to ensure metering pump systems are correctly sized
- List acceptable materials of construction for piping and gaskets
- List the chemical incompatibilities from the MSDS including other chemicals, metals, etc.
- Complete the hazard communication diamond and the PPE required
- Perform a fire code review for separation, and determine the less than exempt amounts of chemical for the occupancy rating


RCC – ZLD Plant Project

ZLD Plant Project


ZLD Project Objectives

- Meet the ZLD Schedule for Plant Design and Equipment Delivery to Support Power Plant and ZLD Construction Schedules
- Provide Design Coordination between (3)
 Design Groups Client, IRCC, and ZLD
 Constructor & Engineer

ZLD Team Organization

ZLD Project Milestone

- Design Kickoff with Client Aug '01
- Design Layout and Equipment Spec's Aug '01 to Nov '01
- All Major Equipment on Order, Dec '01
- ZLD Construction Contract Awarded, Dec '01
- Initial issue of ZLD Installation Drawings for Construction, April '02
- Final issue Construction Drawings, June '02
- Equipment Deliveries Completed, Aug '02
- Construction Completed, Mar '03
- Commissioning Completed, Sept '03

ZLD Pretreatment Equipment

- Solids Contact Clarifiers
- Thickener
- Underflow Pump Skids
- MMF Backwash Tank
- MMFs, Cartridge Filters
- RO Skids
- CIP Skid
- Chemical Addition Skids

ZLD Process Equipment

- Evaporators
- Vapor and Recirculation Ducts
- Vessels and Process Tanks
- Vapor Compressors
- Centrifugal Pumps
- Bulk Chemical Storage Tanks
- Chem Addition Skids

ZLD - Construction

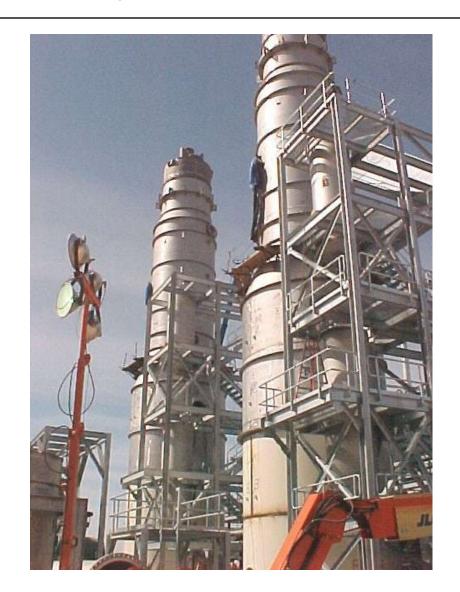
ZLD – Pretreatment Area

ZLD – Evaporator Sump Fabrication

ZLD – Condenser Fly-in

ZLD – MMF Delivery

ZLD - ROs


ZLD – Process Building Piping

ZLD – Evaporator Stair Towers

ZLD – Vapor Compressor w/Insulation

ZLD – Vapor Compressor Installation

ZLD – Process Building

ZLD – MMF/RO Chemical Addition

ZLD – MMF Units

ZLD – RO Sets

ZLD - Chemical Area

ZLD - Chemical Addition Platform

Project Engineering Summary

- Always keep the PM up to date with the latest design and project engineering developments
- Coordinate the efforts of all disiplines involved including project staff engineers
- Coordinate the schedule of tasks that support design development and deliverables
- Perform due diligence for safety in design every day

Project Management for the Engineer

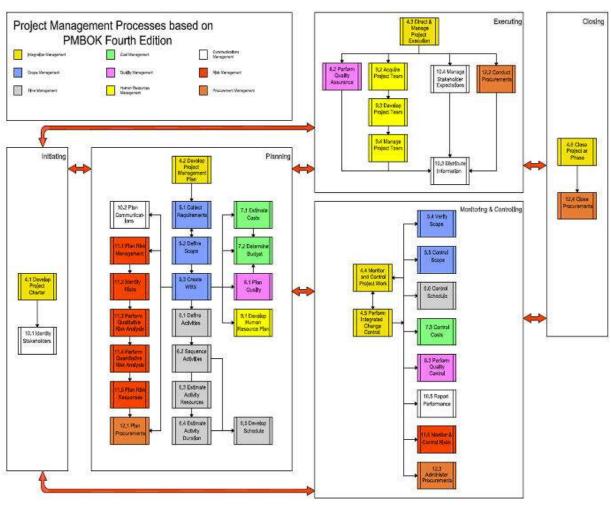
Kalan Guiley
Guidance, Control and Navigation Engineer
747-8 High Lift Systems, The Boeing Company

October 20, 2010
University of Washington

Background

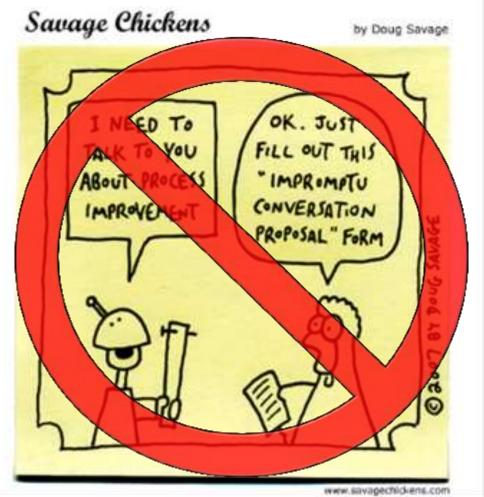
- Education
 - Honors Baccalaureate of Science in ME, Oregon State University
 - Masters Certificate, Applied Project Management, Villanova University
 - MBA, Technology Management, UW
- Work Experience
 - Fluid Systems Standards, Mechanical Hydraulic Systems,
 The Boeing Company
 - Flight Controls High Lift Systems, The Boeing Company
- Professional Society Involvement
 - ASME
 - Puget Sound Engineering Council

Is This a Project?


- Per PMI, a project is:
 - a temporary endeavor, having a defined beginning and end,
 - undertaken to meet unique goals and objectives,
 - usually to bring about beneficial change or added value.

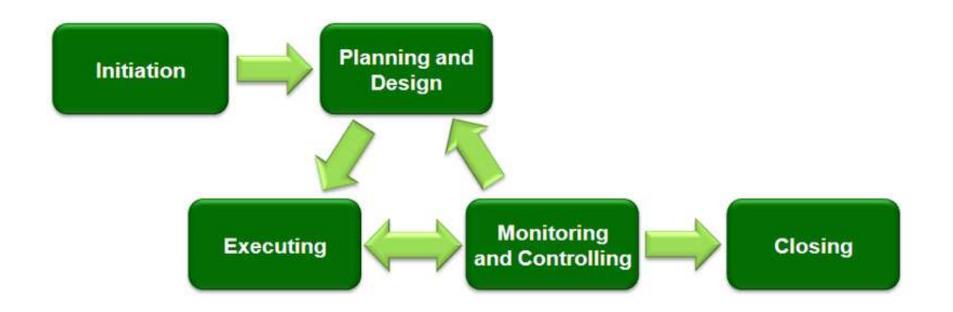
Almost everything you do is a project!

Project Management Processes



When Is a "Project" Really a Project?

- My rule
 - 3 or r
 - 3 or r
 - -3 or r



Project Phases

Keys to Success

- Planning
 - Take the time to understand the project scope
 - Get the schedule right
 - Do you have the right team?
- Team Dynamics
 - Skills AND personalities
 - Inquiry vs. advocacy
 - Process fairness (Brockner, HBR reprint R0603H)
- COMMUNICATION!

Opportunities

- Professional Societies
 - Planning programs and events (projects!)
 - Teamwork
 - Leadership experience
 - Contribute to the profession
 - Fun
 - Visit http://pseconline.org/Societies/ to explore local options

