

The Eight Steps to Specify a Catalyst Bed

Gary Gildert Houston, TX

November 14, 2013

- A speciality chemicals company and a world leader in advanced materials technology
- Origins date back to 1817, floated 1942, FTSE 100 company since June 2002
- Market capitalization of approximately £4.5 billion
- £12 billion revenue and underlying profit before tax* of £426 million for year ended 31st March 2012
- Operations in over 30 countries with 10,000 employees
- Leading global market positions in all its major businesses

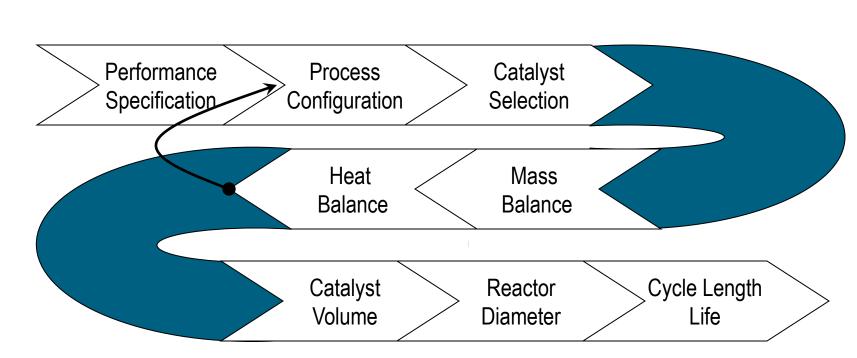
* Before amortisation of acquired intangibles, major impairment and restructuring charges and profit or loss on disposal of businesses and, where relevant, related tax effects.

Chemical Catalysts Business

Supply the catalyst and service demands of the following major global market segments

- **Olefins:** feedstock purification, full and selective hydrogenation of a variety of olefinic streams such as acetylene, pyrolysis gasoline, ethylene cracker products, benzene to cyclohexane, phenol and AMS hydrogenation
- **Alcohols**: feedstock purification, hydroformylation, process licencing, oxo-aldehyde hydrogenation, polishing
- Solvents: de-aromatisation and de-sulphurisation of hydrocarbons
- Fluorochemicals: fluorination and hydrogenation
- Chemical Intermediates, including:
 - hydrogen peroxide (anthraquinone hydrogenation),
 - **aniline** (nitrobenzene hydrogenation),
 - amines (amination, ammonolysis, and nitrile hydrogenation)
 - **polyamides** (cyclohexane, cyclohexanone, hydroxylamine, HMDA, caprolactam polishing)
 - VOC removal
- Sponge Metal catalysts: hydrogenation of polyols, nitriles, nitro groups, olefins
- Edible Oils: full and selective hydrogenation of edible oils and fats
- Oleochemicals: full and selective hydrogenation of fatty acids
- **Biorenewables:** conversion of platform chemicals lipids and sugars (including fermentation products) to chemicals

Gary Gildert


JM& Johnson Matthey

Internationally recognized expert in hydro treating with 24 patents and over 40 publications

- Bachelor of Applied Science (Ch.E.), University of Waterloo 1981
- Masters of Business Administration, Rice University in 2005
- Registered professional engineer in Ontario, Canada (1986) and Alberta, Canada (1990)
- Member of American Institute of Chemical Engineering since 1997, STS Chair 2013
- Member of American Chemical Society and South West Catalysis Society since 2005

Over 30 years of Petrochemical knowledge including new process development and catalyst design and manufacture

- 11 years operations support and process design with Petrosar
- 8 years Process Development Manager Hydrogenation Technology at Chemical Research and Licensing (CDTECH) in Houston, TX.
- 6 years, Regional Sales Manager, Americas for catalysts including technical support globally for olefins purification catalysts
- Co-founder Custom Catalytic Solutions, responsible for marketing, sales, technical service, and finance.
- 5 years, Senior Principal Process Engineer, Johnson Matthey, Process Technologies with responsibilities for technical service, technical mentoring and marketing new hydrogenation catalysts.

© G. Gildert 2006 - 2013

JM 🛠

1. Performance Specification

- Feed rate + margin
 - Maximum rate for sizing
 - Normal rate for life
- Stream properties
 - Hydraulics
 - Detailed composition, or
 - Actual density, viscosity (gas and liquid if 2-phase), surface tension
- Key concentrations for bed sizing feed and product.
 - Limiting reactant
 - Basis for specification

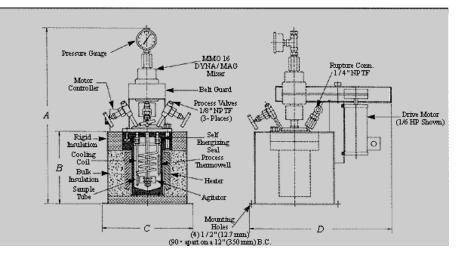
- Hydrogen source
 - Purity
 - Pressure
- Poisons
 - assumptions vs. history
- Alternate cases
 - One case governs sizing
 - Others do not affect result
- Units of measurement

Application Questionnaire

JM 🐼 Johnson Matthey

		Appli	cation Inform	ation	
			e Converter, T		
Company:				Date:	
Location:		Ĩ		By:	
Process Inform	nation				
De-ethanizer Overheads		Normal	Maximum	Feed Co	ontaminants
Feed rate	kg/hr			H2S	ppm m
Composition				COS	ppm m
Methane	mol %			Arsine	ppb w
Acetylene	mol %			water	ppm m
Ethylene	mol %				
Ethane	mol %				
Propylene +	mol %				
Hydrogen Comp	osition				
Hydrogen	mol %				
Methane	mol %				
Carbon Monoxide	mol %				
Ethane +	mol %				
Product Specific	cation	Maximum	Typical		
Acetylene	ppm m				
Hydrogen	ppm m				

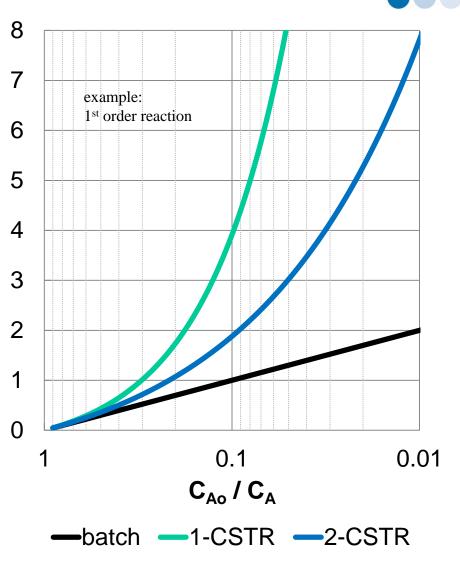
- Batch Reactor
- Continuous Stirred Tank Reactor
- Plug Flow Reactor
 - Adiabatic
 - Isothermal
- Fluidized Bed


JM 🛠

2. Configuration - Batch

- Discovery of most reaction chemistry (Chemists)
- Reusable powdered catalyst
- Easily reproduced
- Easy translation to (small) commercial scale

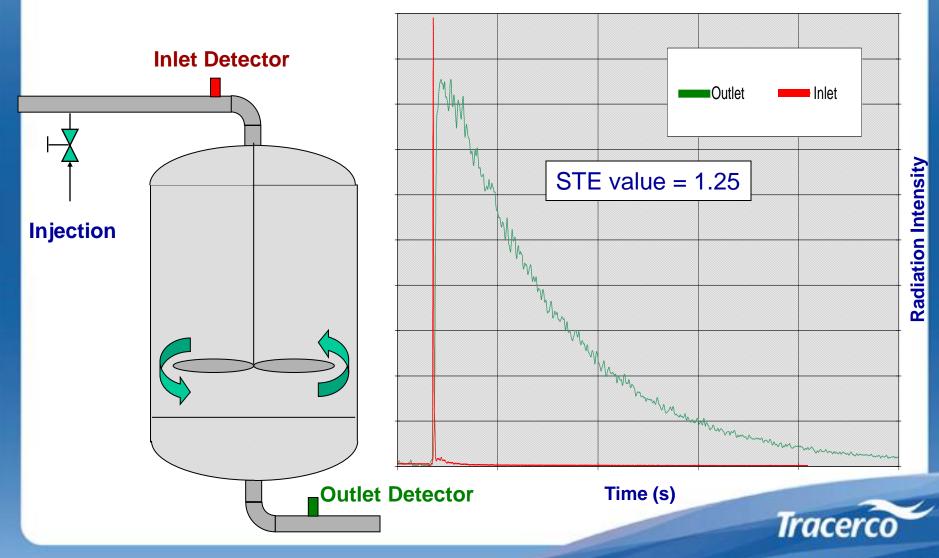
2. Batch Reactor



- Does not scale easily to large volumes
- Batch time = Fill time + reaction time + discharge time
- Catalyst active during product discharge
- Product heel

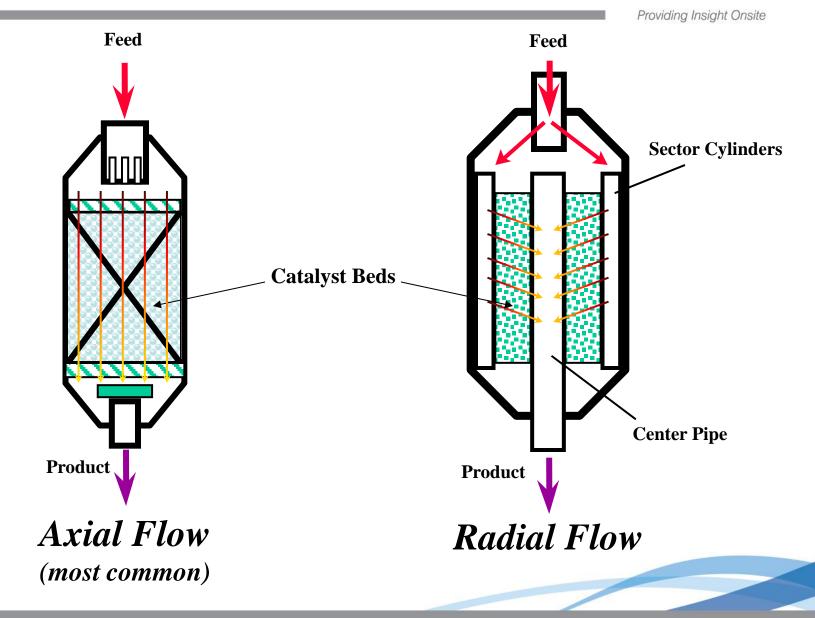
2. Configuration - CSTR

- Continuous flow
 - no fill time
 - no discharge time
 - no product heel
- Isothermal
- Low concentration
 - low fouling
 - Low reaction rate if higher order
- Higher contact time than batch?



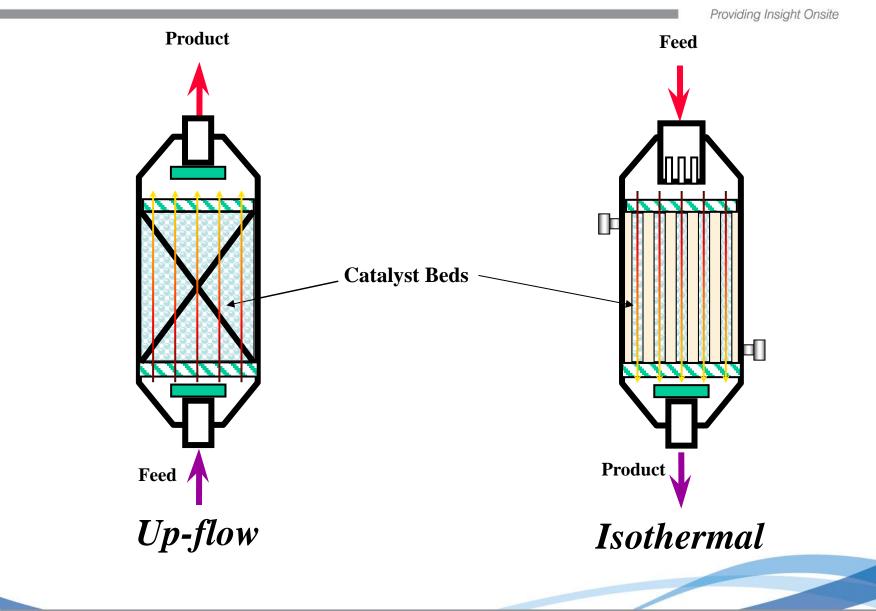
TRACERCO Diagnostics[™]

Residence Time of Stirred Tank Reactor


2. Configuration - PFR

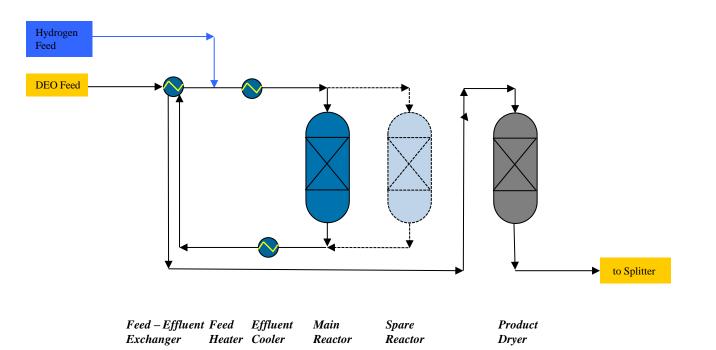
- Most Common Configuration
- Vapor Phase, Liquid Phase, Trickle Bed
- Many variations

Two Reactor Designs



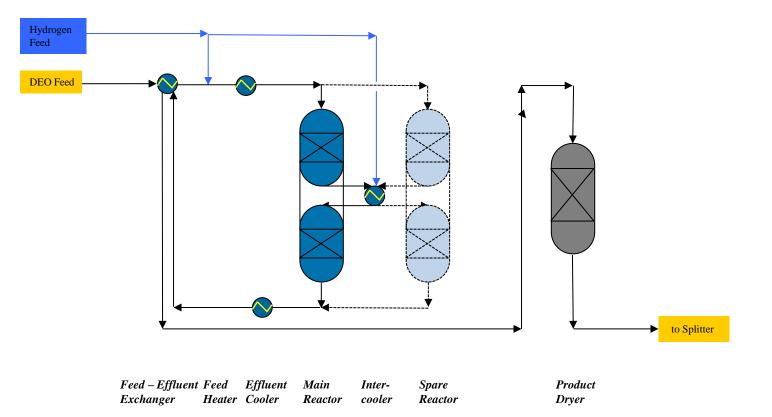
July 2010

TruTec[™] Scanning Services


Two More Reactor Designs

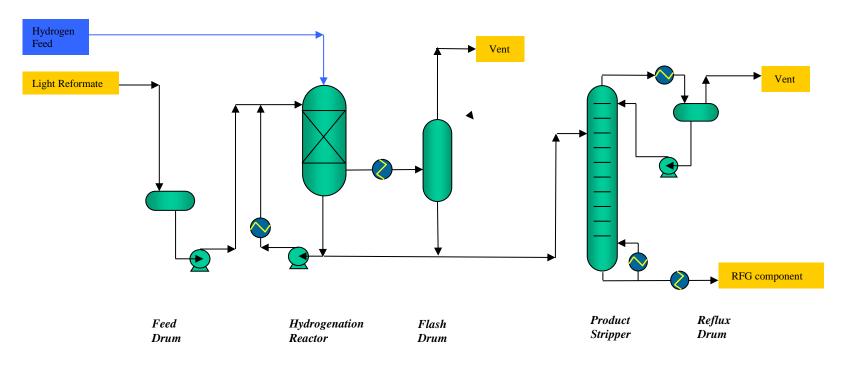
TruTec[™] Scanning Services

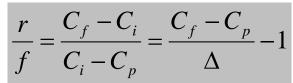
Single Bed Reactor with Spare


- Tail-end, Ethane crackers
- All licensors

JM 🛠

2 X 2 (Two in series with two spares)





- Tail-end, Propane and Naphtha crackers
- All licensors

Recycle Reactor

- 1. Active metal
 - i.e. hydrogenations: Pd, Pt, Ni, Cu, Co, Fe
- 2. Promoter
 - Depends on the required effect: Ag, Au, Mo, W, Pb, Sn
- 3. Carrier (Support)
 - Alumina, Silica, Zeolite, Carbon
- 4. Shape
 - sphere, extrusion, tablet
- 5. Size
 - 1 mm to 6 mm
- Standardized product by application

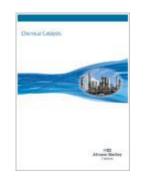
JM

JM 🐼 Johnson Matthey

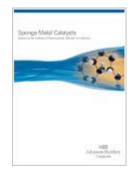
Catalyst Development

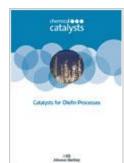
- In-house state of the art testing facilities
- Gas and liquid phase testing capabilities specifically designed for different olefin streams
- Test work uses synthetic feed blends to mimic industrial compositions

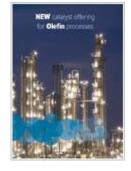
- Dedicated development team researching full and selective hydrogenation catalysts for various markets
- Proving on catalyst offerings under customer feed blends and process conditions



Catalysts for specific services







http://www.jmcatalysts.com/chemicalcatalysts/literature.asp

Pyrolysis Gasoline

Market leading products to : -

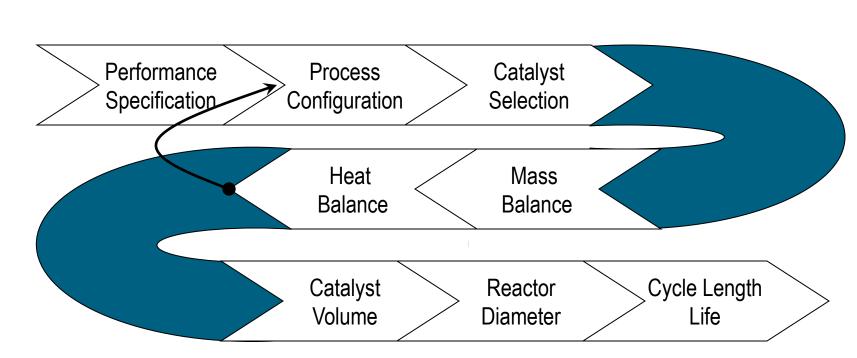
- Improve induction period and colour
- Reduce gum content of gasoline blending components
- Reduce fouling in the downstream hydrodesulphurisation unit

Nickel catalysts

- sulphur and heavy metal tolerance
- preservation of aromatics

Palladium catalysts

- simple activation
- high olefin selectivity


Pyrolysis gasoline catalysts				
	HTC NI	HTC NI	PRICAT PD	PRICAT PD
	200	400	309/6	469
Active metal	Ni	Ni	Pd	Pd
Promoted	no	no	no	NO
Size (mm)	2.5	2.5	2.5	2 - 4
Shape	trilobe extrudate	trilobe extrudate	trilobe extrudate	sphere
Support	alumina	alumina	alumina	alumina

Available in four different types to suit different activation situations

Types of HTC NI catalyst				
	OX	OXS	RP	RPS
Reduction temperature	high	moderate	low	lowest
Sulphur addition	standard	none	standard	none

JM 🛠

© G. Gildert 2006 - 2013

JM 🛠

4. Material Balance

- Ch.E. 101
- Moles!
- Conversion for spec component
- Account for every reaction
- Amount of "reactant" (hydrogen, oxygen, fuel)
 - i.e. H2:Ac, scfh per bbl
 - Excess reactant
 - % conversion
- Equilibrium limits
- Recycle composition
- Vent

- Spreadsheet
- Process simulation

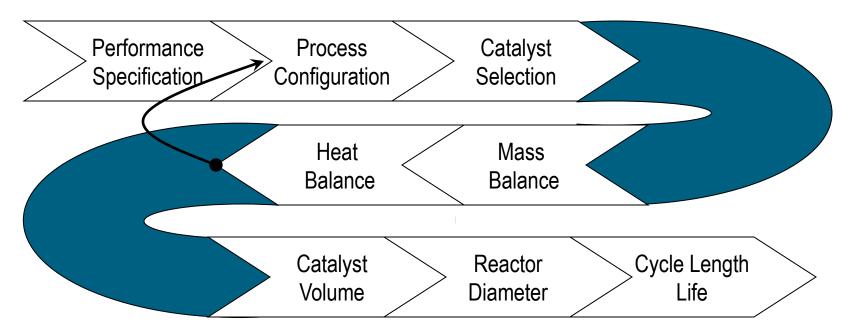
5. Heat Balance

- Required temperature

 Minimum inlet
 - WABT
 - EIT
- Heat of Reaction
 - Heat of formation
 - Heat of combustion
- Pressure Effects
 - Dew point
 - Bubble point
 - V / L split

- Spreadsheet?
- Process simulation

JM 🛠


Heat and Material Balance Issues

JM 🐼 Johnson Matthey

- Poor performance if temperature rise is greater than 75°F (42°C) per bed
 - Activity & selectivity issues
 - Increase recycle
 - Add another bed in series
- Must be at least 15°C (25°F) above the dew point to prevent condensation on catalyst
 - Feed superheat
 - Intercooler operation
- Hydrogen solubility issues
 - Choose thermo package carefully
 - 2-phase feed more complicated than single phase
- Vaporization due to heat of reaction
 - Channeling
 - Hot spots

JM 🐼 Johnson Matthey

© G. Gildert 2006 - 2013

6. Catalyst Volume - Practice

- Required contact time (τ) determined by laboratory performance testing and experience
- Kinetic theory can provide interpolation for alternate conditions.
- Rates are normally transformed for nominal conditions
 - SI = 1 atm, 0° C = Nm³/hr per m³ of catalyst
 - USCU = 14.7 psia, 60° F = scfh per ft³ of catalyst (6% higher for gas!)

$$GHSV = gas hourly space velocity = \frac{Volumetic Feed rate}{Catalyst Volume} \propto \frac{1}{\tau}$$

LHSV = liquid hourly space velocity =
$$\frac{Volumetric Feed Rate}{Catalyst Volume} \propto \frac{1}{\tau}$$

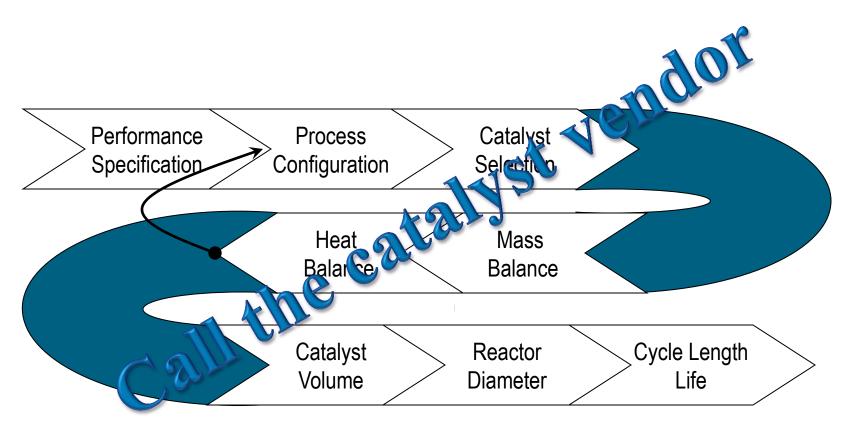
WHSV = weight hourly space velocity =
$$\frac{Mass Feed Rate}{Catalyst Mass} \propto \frac{1}{\tau}$$

JMX

7. Reactor Diameter

- $L/D = \frac{1}{2}$ to 5
 - Radial distribution of short beds
 - Wall effects on tall beds
- Bed Height Limits
 - Maximum based on catalyst crush strength, loading, channeling
 - Minimum based on history, conversion
- Superficial Velocity
 - Maximize for mass transfer
 - Limited by channeling for 2-phase systems
 - Turbulence via Re
 - Mass Transfer via Sh
- Pressure Drop / Flow Regime
 - Process design to minimize
 - High cost & system limits
 - 2-phase flow regime for improved mass transfer = reaction rate

JMCX


8. Catalyst Cycle and Life

- Cycle Length
 - Experience
 - Temperature
 - Heavies in feed
- Life
 - Number of regenerations
 - Accumulation of poisons
 - Average feed rate * average concentration vs. capacity

JM 🛠

The Eight Steps

© G. Gildert 2006 - 2013

JM 🛠

Thank You. Questions?

Gary Gildert, BASc (ChE), PEng, MBA

Senior Principal Process Engineer, Chemical Catalysts Process Technologies Division Johnson Matthey, Inc. 4106 New West Rd. Pasadena, TX 77507 USA

> T: 281-291-0709 M: 281-433-4283 Gary.Gildert@matthey.com www.jmprotech.com

