

ALAMO: Machine learning from data and first principles

Nick Sahinidis

Georgia Institute of Technology

Industrial & Systems Engineering and Chemical & Biomolecular Engineering

Acknowledgements:

Alison Cozad, Owais Sarwar, Zach Wilson; David Miller

CARBON CAPTURE CHALLENGE

- The traditional pathway from discovery to commercialization of energy technologies can be quite long, i.e., ~2-3 decades
- President Obama's plan required that barriers to the widespread, safe, and cost-effective deployment of CCS be overcome within 10 years
- New approaches are needed for taking carbon capture concepts from lab to power plant, <u>quickly</u>, and at low cost and risk
- CCSI was launched to accelerate the development of carbon capture technology, from discovery through deployment, with the help of sciencebased simulations

CARBON CAPTURE SIMULATION INITIATIVE

SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus[®] simulation provided by the National Energy Technology Laboratory

CHALLENGES

PROCESS DISAGGREGATION

MACHINE LEARNING PROBLEM

Build a model of output variables z as a function of input variables x over a specified interval

Independent variables: Operating conditions, inlet flow properties, unit geometry, molecular descriptors, etc. Dependent variables: Efficiency, outlet flow conditions, conversions, heat flow, chemical potential, etc.

FITTING MODELS TO DATA

EUROPE IN 1801

- Piazzi observed positions of Ceres
- Gauss: Least squares
 - Used observations and Kepler's conjecture

DESIRED MODEL ATTRIBUTES

1. Accurate

We want to reflect the true nature of the system

2. Simple

- Interpretable
- Usable for algebraic optimization

3. Generated from a minimal data set

Reduce experimental and simulation requirements

4. Obeys physics and user insights

- Increase fidelity and validity in regions with no measurements

ALAMO

Automated Learning of Algebraic MOdels

MODEL COMPLEXITY TRADEOFF

Model complexity

MODEL IDENTIFICATION

- Identify the functional form and complexity of the surrogate models z = f(x)
- Seek models that are linear combinations of sets of basis functions
 - **1.** Simple basis functions

Cate	gory	$X_j(x)$					
I.	Polynomial	$(x_d)^{lpha}$					
II.	Multinomial	$\prod_{d\in\mathcal{D}'\subseteq\mathcal{D}} (x_d)^{\alpha_d}$					
III.	Exponential and logarithmic	$\exp\left(\frac{x_d}{\gamma}\right)^{lpha}, \log\left(\frac{x_d}{\gamma}\right)^{lpha}$					

- **2.** User-specified basis functions
- **3.** Radial basis functions

Georgia Institute of Technology

OVERFITTING AND TRUE ERROR

• Step 1: Define a large set of potential building blocks

Select subset that be ances model fit against model complexity

۲

MODEL SELECTION CRITERIA

Balance fit (sum of square errors) with model complexity (number of terms in the model; denoted by **p**)

Corrected Akaike information criterion

$$AIC_{c} = N \log \left(\frac{1}{N} \sum_{i=1}^{N} (z_{i} - X_{i}\beta)^{2}\right) + 2p + \frac{2p(p+1)}{N-p-1}$$

Mallows' Cp

$$C_p = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{\widehat{\sigma^2}} + 2\mathbf{p} - N$$

Hannan-Quinn information criterion

$$HQC = N \log\left(\frac{1}{N} \sum_{i=1}^{N} (z_i - X_i \beta)^2\right) + 2p \log(\log(N))$$

Bayes information criterion

$$BIC = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{\widehat{\sigma^2}} + \frac{p}{\log(N)}$$

Mean squared error

$$MSE = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{N - p - 1}$$

Mixed-integer nonlinear programming problems

Georgia Institute of Technology

BRANCH-AND-REDUCE

Ryoo and S., 1996; Tawarmalani and S., 2004; Khajavirad and S., 2018; Kilinc and S., 2018

CONVEXIFICATION

Classical optimization algorithms provide a local minimum "closest" to the starting point used

CONVEX ENVELOPES

Function	Domain							
\sqrt{y}/x^2	$x \in [-2, -1]$	$y \in [1,4]$						
$y/(x_1x_2)$	$x_1 \in [0.1, 1]$	$x_2 \in [1.5, 2]$	$y \in [0.5, 2]$					
$y \exp(-x)$	$x \in [-1, 1]$	$y \in [1,3]$						
$\log_{10} y/x^2$	$x \in [0.1, 2]$	$y \in [0.1, 10^2]$						
$y\exp(x_1 - x_2)$	$x_1 \in [0,1]$	$x_2 \in [0,1]$	$y\in [-1,1]$					
$x^2 \log_{10} y$	$x \in [-1, 2]$	$y \in [0.1, 10]$						
y_1y_2/x	$x \in [0.1, 1]$	$y_1 \in [0.1, 1]$	$y_2 \in [0.5, 1.5]$					
$x^2\sqrt{y_1+y_2}$	$x \in [0.1, 0.5]$	$y_1 \in [0,1]$	$y_2 \in [0.5, 1.5]$					
$(2y_1 - y_2)\exp(-x)$	$x \in [-0.5, 1.0]$	$y_1 \in [0.6, 1.5]$	$y_2 \in [0.1, 1.0]$					
$(y_1 + y_2)/x$	$x \in [1, 5]$	$y_1 \in [-2, 1]$	$y_2 \in [1,3]$					
y_1y_2/x	$x \in [0.1, 1]$	$y_1 \in [-1,1]$	$y_2 \in [0.1, 1]$					
$(\sqrt{y_1} - y_2) \exp(-x)$	$x \in [0,1]$	$y_1 \in [0,1]$	$y_2 \in [0.1, 2]$					
$(y_1y_2-2)/\log x$	$x \in [10, 100]$	$y_1 \in [0,1]$	$y_2 \in [1, 2]$					

Khajavirad and Sahinidis, 2013, 2014

GLOBAL MINLP SOLVERS ON MINLPLIB2

Constraints: 1893 (1—164,321), Variables: 1027 (3—107,223), Discrete: 137 (1—31,824)

223 TIMES FASTER

SolverTime w.r.t. 2019 - arith. means

- **Results on MINLPLIB2**
- Constraints: 1893 (1—164,321), Variables: 1027 (3—107,223), Discrete: 137 (1—31,824)

Time limit 500 seconds

SOLVES MORE 2.5X MORE PROBLEMS

Comparisons based on solver ability to prove global optimality

FREE THROUGH THE NEOS SERVER

PROBLEMS SOLVED WITH BARON ON NEOS SINCE 2015

CPU TIME COMPARISON OF METRICS

- Eight benchmarks from the UC-Irvine data set
- Seventy noisy data sets were generated with multicolinearity and increasing problem size (number of bases)

BIC solves more than two orders of magnitude faster than AIC, MSE and HQC

MODEL QUALITY COMPARISON

- BIC leads to smaller, more accurate models
 - Larger penalty for model complexity

Georgia Institute of Technology

ALAMO

Automated Learning of Algebraic MOdels

ERROR MAXIMIZATION SAMPLING

- Search the problem space for areas of model inconsistency or model mismatch
- Find points that maximize the model error with respect to the independent variables

$$\max_{x} \left(z(x) - \hat{z}(x) \right)^2$$

- Optimized using derivative-free solver SNOBFIT (Huyer and Neumaier, 2008)
- SNOBFIT has advantages over 20+ other derivative-free solvers (Rios and Sahinidis, 2013)

ALAMO METHODOLOGY

CONSTRAINED REGRESSION

CONSTRAINED REGRESSION

- Challenging due to the semi-infinite nature of the regression constraints
- Use intuitive restrictions among predictor and response variables to infer nonintuitive relationships between regression parameters

IMPLIED PARAMETER RESTRICTIONS

Find a model \hat{z} such that $\hat{z}(x) \ge 0$ with a fixed model form:

 $\hat{z}(x) = \beta_1 \, x + \beta_2 \, x^3$

Step 1: Formulate constraint in z- and x-space Step 2: Identify a sufficient set of β-space constraints

Global optimization problems solved with BARON

TYPES OF RESTRICTIONS

SOFTWARE AVAILABILITY

- Implemented by PSE in its gPROMS simulator
- Free from http://minlp.com

													đ	×
Enter dat	ta Plot dat	a Run ALAMO View results												
Select an ou	🛓 ALAMO term	inated successfully	- • •	nessage										
Solution sta	Stop ALAMO	ALAMO version 2017.9.27. Built: WIN-64 Wed Sep 27 16:37:32 EDT 2017												
Function	Close window	If you use this software, please cite: Cozad, A., N. V. Sahinidis and D. C. Miller, Automatic Learning of Algebraic Models for Optimization, AIChE Journal, 60, 2211-2227, 2014.		Z 25.0 -						- <u> -</u>				
		ALAMO is powered by the BARON software from http://www.minlp.com/	=	22.5 -					. J					
		Licensee: Nick Sahinidis at The Optimization Firm, LLC., niksah@gmail.com.		20.0 -							·	·		
		Reading input data Checking input consistency and initializing data structures Warning: eliminating basis log(X1)		17.5 -					·		·			
Model size Error		Step 0: Initializing data set User provided an initial data set of 11 data points We will sample no more data points at this stage		12.5								 		Data
Time		Iteration 1 (Approx. elapsed time 0.16E-01 s)		7.50				· - 1						
		Step 1: Model building using BIC		5.00 -										
		Model building for variable Z BIC = -0.100E+31 with Z = X1^2		2.50 -										
		Calculating quality metrics on observed data set.	•	0.00 -	t <u>i</u> 5.00 -4.0	0 -3.00	-2.00	-1.00	0.00 1	.00 2.0	10 3.00	4.00	↓ ×1 5.00	

LEARNING THE SIX-HUMP CAMEL FUNCTION

$$f(x_1, x_2) = \left(4 - 2 \cdot 1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + x_2^2(4x_2^2 - 4) + \epsilon$$

Iteration	N	R_{test}^2	$\ \boldsymbol{\beta}\ _{0}$
1	10	< 0	2
2	16	< 0	2
3	19	< 0	2
4	27	0.98	7

Third iteration

Final iteration

 $f = 4.56x_1^2 - 3.16x_2^2 - 2.41x_1^4 + 3.07x_2^4 + 0.38x_1^6 + 1.09x_1x_2 - 0.28$

OPTIMIZATION WITH THE SURROGATE

True minimum f(0.0898, -0.7127) = -1.0316

ALAMO surrogate minimum f(0.0871, -0.7251) = -1.1248

NEURAL NETWORK SURROGATES

Georgia Institute of Technology

RELU NEURAL NETWORK SURROGATES

1 hidden layer 10 nodes 1 hidden layer 200 nodes 3 hidden layer 30 nodes

y=f(x)

-2

-2

0

x1

0.5

0

x2

-0.5

2 -1

x1

2

0

-2

-2

0.5

0

x2

-0.5

2 -1

x1

True minima

f(0.0898, -0.7126) = -1.0316f(-0.0898, 0.7126) = -1.0316

y=f(x)

0

-2

0.5

0

x2

-0.5

-1

2

SIMPLE AND ACCURATE MODELS

Results over a test set of 45 known functions treated as black boxes with bases that are available to all modeling methods

SAMPLING EFFICIENCY

Results with 45 known functions with bases that are available to all modeling methods

COMPARISONS ON BENCHMARKS

- 98 problems
 - 30 from the UC-Irvine ML repository
 - 37 from the NIST standard regression database
 - 31 from the Virtual Library of Simulated Experiments
- Number of inputs: 1—105 (average 11)
- Number of features: 6—735 (average 90)
- Number of measurements: 6—32561 (average 2144)
- Algorithms compared
 - Lasso (Matlab)
 - Glmnet (lasso in R)
 - A lasso (adaptive lasso option in Glmnet)
 - Step F/B (Matlab)
 - ALAMO with BIC solved to optimality

TIME AND QUALITY COMPARISONS

CARBON CAPTURE SYSTEM DESIGN

- Discrete decisions: How many units? Parallel trains? What technology used for each reactor?
- Continuous decisions: Unit geometries
- Operating conditions: Vessel temperature and pressure, flow rates, compositions

BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

- Model inputs (16 total)
 - Geometry (3)
 - Operating conditions (5)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

- Model outputs (14 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (3)
 - Solid compositions (3)
 - Flow rates (2)
 - Outlet temperatures (3)

Model created by Andrew Lee at the National Energy Technology Laboratory

EXAMPLE MODELS - ADSORBER

 $P_{in} = \frac{1.0 P_{out} + 0.0231 L_b - 0.0187 \ln(0.167 L_b) - 0.00626 \ln(0.667 v_{gi}) - \frac{51.1 \text{ xHCO3}_{in}^{ads}}{F_{in}^{gas}}$

$$T_{\text{out}}^{\text{sorb}} = 1.0 \,\mathrm{T}_{\text{in}}^{\text{gas}} - \frac{\left(1.77 \cdot 10^{-10}\right) \,\mathrm{NX}^2}{\gamma^2} - \frac{3.46}{\mathrm{NX} \,\mathrm{T}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}}} + \frac{1.17 \cdot 10^4}{\mathrm{F}^{\text{sorb}} \,\mathrm{NX} \,\mathrm{xH2O}_{\text{in}}^{\text{ads}}}$$
$$F_{\text{out}}^{\text{gas}} = 0.797 \,\mathrm{F}_{\text{in}}^{\text{gas}} - \frac{9.75 \,\mathrm{T}_{\text{in}}^{\text{sorb}}}{\gamma} - 0.77 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{xCO2}_{\text{in}}^{\text{gas}} + 0.00465 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}} - 0.0181 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}} \,\mathrm{xH2O}_{\text{in}}^{\text{gas}}$$

Georgia Institute of Technology

SURROGATE MODEL RESULTS

SYSTEM OPTIMIZATION

Mixed-integer nonlinear programming model

- Economic model
- Process model
- Material balances
- Hydrodynamic/Energy balances
- Reactor surrogate models
- Link between economic model
 and process model

fgln

- Binary variable constraints
- Bounds for variables

MINLP solved with BARON

EXTENSIONS

- Other metrics—L0L2 regularization, cross validation
- Thermodynamics (HELMET; idaes.org distribution)
 - Equations of state
- Kinetics (RIPE; idaes.org distribution)
 - Simultaneous mechanism and parameter estimation
- Symbolic regression

$$5x_1 + (x_1)^2 + x_1 - x_2$$

CONCLUSIONS

- ALAMO provides algebraic models that are
 - ✓ Accurate
 - ✓ Simple
 - Generated from a minimal number of data points

ALAMO's constrained regression facility allows modeling of

- Bounds on response variables
- ✓ Variable groups
- ✓ Forthcoming: constraints on gradient of response variables
- Built on top of state-of-the-art optimization solvers
- Extends the applicability of algebraic optimization to simulation- and experiment-based optimization