min f(x,y).
W W LV/ s.t. g(z,y) <0
h’(xsy)=0'

ALAMO: Machine learning
from data and first principles

Nick Sahinidis
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CARBON CAPTURE CHALLENGE

* The traditional pathway from discovery to
commercialization of energy technologies can be
quite long, i.e., ¥2-3 decades

* President Obama’s plan required that barriers to
the widespread, safe, and cost-effective
deployment of CCS be overcome within 10 years

* New approaches are needed for taking carbon
capture concepts from lab to power plant, quickly,
and at low cost and risk

* CCSI was launched to accelerate the development
of carbon capture technology, from discovery
through deployment, with the help of science-
based simulations

Georgia Institute of Technology 2



CARBON CAPTURE SIMULATION INITIATIVE

Stabilize the cost
during commercial
deployment

Reduce the time
for design &
troubleshooting

Identify
promising
concepts

Quantify the technical
risk, to enable reaching
larger scales, earlier
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SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory

Georgia Institute of Technology 4



CHALLENGES

No algebraic model Complex process alternatives
o 1 reactor
H CO? 2 reactors
- 3 reactors
S
-
o
@)
Reactor size
Scarcity of fully robust
g simulations
=
<
|
- |
g minutes
(Vs

seconds

- Gradient-based methods )( Derivative-free methods

Georgia Institute of Technology



PROCESS DISAGGREGATION
P —

Block 1: Model
Simulator generation

— —— )

I ‘. min  f(z)
i —
E=4 I Block 2: Model st g(z) <0
= 1 i Simulator generation h(gc) —
S v
- : : r € [z', Y]

—_—_— J I \ Y

Block 3: ] [ Model

Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate Add algebraic constraints
process blocks models with a functional design specs, heat/mass
form tailored for an balances, and logic
optimization framework constraints

Georgia Institute of Technology 6



MACHINE LEARNING PROBLEM

Build a model of output variables z as a function of
input variables x over a specified interval

)

X1
/xz\
¥ E R-‘I‘: : z € [R™
z u | X ‘U 2=
X" XxX<X ; s / _

\x R/ \Zm

Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,

properties, unit geometry, conversions, heat flow, chemical
molecular descriptors, etc. potential, etc.

Georgia Institute of Technology 7



FITTING MODELS TO DATA

30 4 Z

20 -

15 -

10 -
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EUROPE IN 1801

* Piazzi observed positions of Ceres

* @Gauss: Least squares
— Used observations and Kepler’s conjecture

Georgia Institute of Technology 9



DESIRED MODEL ATTRIBUTES

1. Accurate
— We want to reflect the true nature of the system

2. Simple

— Interpretable
— Usable for algebraic optimization

3. Generated from a minimal data set

— Reduce experimental and simulation requirements

4. Obeys physics and user insights
— Increase fidelity and validity in regions with no measurements

Georgia Institute of Technology
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ALAMO

Automated Learning of Algebraic MOdels
C Start )

A 4

Initial sampling

A 4

4 . )
Build surrogate

A 4

L model ) [- -
tUp_d"f'te f Adaptive b Model
raining a ode
data set \ sampling - error
3 o l ™ New model
false e Current model

converged?

true Black-box function

(__Stop )

Cozad, Sahinidis, Miller, 2014
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MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
Neural nets [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]

4
>
(&) - ————— -
s Preferred
> region § _
o
<
p—
D
=
=

Linear response surface

>

Model complexity

Georgia Institute of Technology 12



MODEL IDENTIFICATION

* Identify the functional form and complexity of the surrogate
models z = f(z)
 Seek models that are linear combinations of sets of basis

functions
1. Simple basis functions

Category X;(x)

I. Polynomial (za)”

II.  Multinomial H (za)™
deD'CD

8 (4]
ITI. Exponential and logarithmic  exp (%;i) , log (%1)

2. User-specified basis functions
3. Radial basis functions

Georgia Institute of Technology
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OVERFITTING AND TRUE ERROR

* Step 1: Define a large set of potential building blocks
Bo + Bix1 + Boxo + Bax1xe + Lae™ + B5e™? +

i(z) =
* Step 2: Model rm\ [

r) =24 x5+ 5"

ances model fit against model complexity

Select subset that bg
=

Ideal Model

*True error
Empirical error

! Complex1ty

<€
Underfitting ' Overfittin g

Georgia Institute of Technology
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MODEL SELECTION CRITERIA

Balance fit (sum of square errors) with model complexity
(number of terms in the model; denoted by p)

Corrected Akaike information criterion

2p(p+1)
N—-—p-1

N
1
AICC = Nlog NZ(ZL' —Xi,B)Z + Zp +
i=1

Mallows’ Cp

Iiv=1(Zi: XiB)* e

2
o
Hannan-Quinn information criterion

Cp: p—N

|
HQC = N log NE(ZL' — X;£)? | + 2plog(log(N))

=1
Bayes information criterion

N 2

. Nz — X

pic = 2= — 2 + p log(N)
o
Mean squared error
MSE = Iiv=1(Zi _Xi,B)Z

N—-—p-1
Mixed-integer nonlinear programming problems

Georgia Institute of Technology

15



BRANCH-AND-REDUCE

Convexification

Range reduction
Finiteness A

\ \
x‘é\ Branch-and-bound \\ \hﬁ\
dh :

L) "
'0
cz@)

Ryoo and S., 1996; Tawarmalani and S., 2004; Khajavirad and S., 2018; Kilinc and S., 2018
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CONVEXIFICATION

X

Classical optimization algorithms provide a local
minimum “closest” to the starting point used

Georgia Institute of Technology 17



CONVEX ENVELOPES

Function Domain

VU rel[-2,—1] ye[l,4]

y/(r1x2) xy € (0.1, 1] xo € [1.5,2] y € [0.5,2]
yexp(—z) r e |—1,1] y € [1,3]

logoy /x> r € [0.1,2] y € [0.1,107]

yexp(xy — o) xy € [0,1] xy € [0, 1] y € [—1,1]
r2log, 0y re[-1,2] y € [0.1,10]

Y1yo/x xr e [0.1,1] y1 € (0.1, 1] ya € [0.5,1.5]
22\ /y1 T 2 re[0.1,0.5] i €]0,1] yo € [0.5,1.5]
(2y1 — yo) exp(—z) | z € [-0.5,1.0] w1 €[0.6,1.5] w2 € [0.1,1.0]
(y1 + yo)/x z € [1,5] i €[=2,1]  yp e [1,3]
Y12/ T x e [0.1,1] Yy € |—1,1] ys € (0.1, 1]
(VUL —y2)exp(—z) | = € [0,1] vy € 0,1] y2 € (0.1, 2]
(y1y2 — 2)/ log x x € [10,100] vy € [0,1] ys € [1,2]

Khajavirad and Sahinidis, 2013, 2014

Georgia Institute of Technology
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GLOBAL MINLP SOLVERS ON MINLPLIB2

n.a | . |
0.7 = |
ne | e i
="
E r I..-I-l"
2 F.‘ ---------------------------------------
E D5 B r/- '“-.._“r---.'- llllllllllllllll |
[ix] .-..
E _,,.r"" ....--'""'"“
= ul “l;ll‘“.
E D4 B f#..- - lr’.\-F""“- ]
E JJ.JF L _'.,..---
E —.u"'" ,.-.-ll""".‘--
B p3p _'_"_...---" ]
=) e
= | "
02 1
CAMNSOLVE
BAROMN ===
01 i . S|P ssssssas _
Time limit 500 seconds ANTIGONE =meremres
LINDOSLOBAL
| | COUEMME
I:I 1 1 1 1 1 1 1 1 1 1 !

10
not more than =-times worst than best solver

100

CAN_SOLVE
BARON

SCIP

ANTIGONE

Constraints: 1893 (1—164,321), Variables: 1027 (3—107,223), Discrete: 137 (1—31,824)

Georgia Institute of Technology
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223 TIMES FASTER

SolverTime w.r.t. 2019 - arith. means
Filter: all instances

250

223.07

1.0

I
2001 2005 2010 2015 2019

* Results on MINLPLIB2
« Constraints: 1893 (1—164,321), Variables: 1027 (3—107,223), Discrete: 137 (1—31,824)

Time limit 500 seconds

Georgia Institute of Technology



SOLVES MORE 2.5X MORE PROBLEMS

proportion of problems solved

0.7

0.6

0.5

0.4

0.3

0.2

01}

mmanl®en"
PR
il

BARON-2019 —
, BARON-2001 ======-=

10
not more than x-times worst than best solver

100

Comparisons based on solver ability to prove global optimality

Georgia Institute of Technology
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FREE THROUGH THE NEOS SERVER

PROBLEMS SOLVED WITH BARON ON NEOS

SINCE 2015
200,000 -
150,000 -
100,000
50,000 -
0 -
2015 2016 2017 2018 2019

% MNumber of Problems
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CPU TIME COMPARISON OF METRICS

* Eight benchmarks from the UC-Irvine data set

* Seventy noisy data sets were generated with multicolinearity
and increasing problem size (humber of bases)

Cp ——BIC —AIC, MSE, HQC

100000

BIC solves more than two

orders of magnitude faster
. / than AIC, MSE and HQC

0.01

CPU time (s)

20 30 40 50 60 70 80

Problem Size

Georgia Institute of Technology 23



MODEL QUALITY COMPARISON

* BIC leads to smaller, more accurate models
— Larger penalty for model complexity

Cp ——BIC

J
>
o
T
o
O
{
<
(2
m

25

20 30 40 50 60 70 80

0 &= T e Problem Size

20 30 40 50 60 70 80

Problem Size

Spurious Variables Included
% Deviation from True Model
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ALAMO

Automated Learning of Algebraic MOdels

( Start )

Y

Initial sampling

Y

( . )
Build surrogate

A 4

. model )
Up.da-lte Adaptive
training sampling
data set
false Model

converged?

true

(__Stop )

Georgia Institute of Technology

Error maximization

sampling

25



ERROR MAXIMIZATION SAMPLING

* Search the problem space for areas of model inconsistency
or model mismatch

* Find points that maximize the model error with respect to
the independent variables

Surrogate model

— Optimized using derivative-free solver SNOBFIT (Huyer and
Neumaier, 2008)

— SNOBFIT has advantages over 20+ other derivative-free solvers (Rios
and Sahinidis, 2013)

Georgia Institute of Technology
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ALAMO METHODOLOGY

Model i Sample Points Model i+1
V\ surrogate / / I bl /
‘ ; ‘ « surrogate |
model
model
Data
P, ;¢ points %2 -
Black-box New sample ©)

function point

3
or Maximizatio®™ R €byild mode\

Derivative-free
optimization
In low
dimensions

Mixed-integer
programming
for best simple
model

Georgia Institute of Technology
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CONSTRAINED REGRESSION
0 < Al <[A]™*

Al N

Fits the true function better

o~

Fits the data better f

Extrapolation zone

.

N

Data space

Safe extrapolation

Georgia Institute of Technology
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CONSTRAINED REGRESSION

Standard regression Constrained regression

6

min Y (2 — &(zi; b1, Ba))
/ B1,B2 1
easy
] s.t. B1 > fa
min Z (2 — 2(2:; 51,52))2

B1,8 ,
TR =t Surrogate

6
. 2 2
del min E (Zz — Z(%ﬁﬂla&))

s.t. 2(:&;;51,,32)20 Vx

* Challenging due to the semi-infinite nature of the regression
constraints

e Use intuitive restrictions among predictor and response
variables to infer nonintuitive relationships between
regression parameters

Georgia Institute of Technology



IMPLIED PARAMETER RESTRICTIONS

Find a model Z such that Z(x) > 0 with a fixed model form:

2(z) =Pz + B2 2®

Step 1: Formulate Step 2: Identify a sufficient
constraint in z- and x-space set of B-space constraints
6 6 2
. 3
min > (- [ro+ 427))° pp 2 [herhe)
1,M2 i=1 1=

s.t. (0.2408; +0.0138 52 > 0

constraint 0.120 8, 4+ 0.00173 83 > 0
0.138 81 -+ 0.00263 B > 0

4 B-constraints

Global optimization problems solved with BARON

Georgia Institute of Technology 30



TYPES OF RESTRICTIONS

L P * "
(Al > fout(,) < pin B+ B0+ 29 =1
E wh dn‘g ?L M * 4 %\ L ’3 T e Rl & T R 3 -
= £ T L
£, PR "N & .
ﬁ?{ %%~ T kS
& N Za#” Y
i % L N z
i % LR s "\, i £
/ \ e
g AN b ™ g T
H AN s T
§ B, L ,«'/ et s
L T L ¢ ———
pressure, temperature, mass and energy balances, mass balances, sum-to-
.
one, state variables

compositions

physical limitations

monotonicity, numerical
properties, convexity

L
e e
gy,

safe extrapolation,
boundary conditions

Add
no slip

31
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OFTWARE AVAILABILITY

* Implemented by PSE in its gPROMS simulator

* Free from http://minlp.com

& ALAMO = [& ] R
File Edit Help
Enter data @ Plot data Run ALAMO View results
— |2/ ALAMO terminated successfully E@ nessage
. : ALAMO version 2017.9.27. Built: WIN-64 Wed Sep 27 16:37:32 EDT 2017
Solution sta Close window
Function If you use this software, please cite:
Cozad, A., N. V. Sahinidis and D. C. Miller,
Automatic Learning of Algebraic Models for Optimization, =
AIChE Journal, 60, 2211-2227, 2014. 650 S T T T o T T T T
ALAMO is powered by the BARON software from http.//www.minlp.com/ - 22 a—J: —————— —————— —————— L ————— J ————— 4 —————— —————— L ————— 1 ————— 4 ——————
Licensee: Nick Sahinidis at The Optimization Firm, LLC., niksah@gmail.com. 200~ s b P P deeooe- ooe- R feoo- ST
Reading input data S o N SR SO Lo N SO P i
Checking input consistency and initializing data structures ! h ! ! ! ! ! ! ! h !
Warning: eliminating basis log(X1) B O . Y R S . N S 1
Model size Step 0: Ini.tializing.d.a‘?aset . 125__5 ______ i ______ i______i_______i______i ______ i ______ i______i______i ______ i O oo
User provided an initial data set of 11 data peints ' ! ! ! ' ! ! ' ' ! !
Eosy We will sample no more data points at this stage ! ! ! ! ! ! ! ! ! ! !
Time 100 R e o o LU | L® Ao
Iteration 1 (Approx. elapsed time 0.16E-01 s) ' '
TEIf- - EEEEEE - - T----- a------ m----- R To---- R ]
Step 1: Model building using BIC i i i i i i i i i i i
500fi------ EEEEEE me---- re---- Tm---- a------ === r----- To---- R ]
Model building for variable Z . 1 1 L . 1 1 L . 1 1
N SR S
BIC = -0.100E+31 with Z = X1%2 m m
D00 sy — — — —— e — F—— F—— ——— H
Calculating quality metrics on observed data set. 500 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 .00 400 500
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LEARNING THE SIX-HUMP CAMEL FUNCTION

x1

3

)x% + x12; + x5(4x3 —4) + €

f(xq,x9) = (4 —2.1x5% +

lteration N RZ. |IBllo

1 10 <0 2
2 16 <0 2 First iteration Second iteration
3 19 <0 2
4 27 0.98 7

Third iteration Final iteration

f=4.56x5 —3.16x3 — 2.41x7 + 3.07x3 + 0.38x% + 1.09x;x, — 0.28

Georgia Institute of Technology 33



OPTIMIZATION WITH THE SURROGATE

True minimum
£(0.0898,-0.7127) = —1.0316

ALAMO surrogate minimum
£(0.0871,—0.7251) = —1.1248

1
0.5

Georgia Institute of Technology



NEURAL NETWORK SURROGATES

Inputs Hidden layers Output

Inputs  Hidden layer  Qutput

PO SO PG S S

7 i
i
i
i
i
A
A
i
A
I
I
I
[
%
[
[
1}
?
]
v
¥
¥
Y
|
Y
Y
Y
Y
Y
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RELU NEURAL NETWORK SURROGATES

1 hidden layer 10 nodes 1 hidden layer 200 nodes 3 hidden layer 30 nodes

f -0.919 -1.22 -1.194
X1 0.064 -0.134 -0.016
X3 -0.596 0.683 0.639

True minima
£(0.0898,—-0.7126) = —1.0316
f(—0.0898,0.7126) = —1.0316

Georgia Institute of Technology 36



SIMPLE AND ACCURATE MODELS

Modeling type, Median More complexity than required
@ »

ALAMO modeler, 0 | E

The lasso, 4 — }

Ordinary regression, 9 | .
- ll 0 0 lIO 2IO 3I0 40 |
Number of terms in Number of terms in
the surrogate model the true function

Results over a test set of 45 known functions treated as black

boxes with bases that are available to all modeling methods
Georgia Institute of Technology 37



SAMPLING EFFICIENCY

Fraction of problems solved

1.00 ALAMO modeler
0.99 the lasso
0.97 Ordinary regression

problems
solved exactly

(0.005, 0.80)
80% of the problems
had <0.5% error

error maximization sampling
[

0.00 - :

0 0.005 0.01

Normalized test error 0.95 ALAMO modeler
___.---""""'-"“_-_-,:_.: _______ s D" 0.84 Ordinary regression
0.671" e 0.87 the lasso
-.-5..“&'{;"

0.00 .‘- slingle Latin hypercubeI

0 0.005 0.01

Normalized test error

Results with 45 known functions with bases that are available to all modeling methods
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COMPARISONS ON BENCHMARKS

* 98 problems
— 30 from the UC-Irvine ML repository
— 37 from the NIST standard regression database
— 31 from the Virtual Library of Simulated Experiments
* Number of inputs: 1—105 (average 11)
* Number of features: 6—735 (average 90)
* Number of measurements: 6—32561 (average 2144)

* Algorithms compared
— Lasso (Matlab)
— Glmnet (lasso in R)
— A lasso (adaptive lasso option in GImnet)
— Step F/B (Matlab)
— ALAMO with BIC solved to optimality

Georgia Institute of Technology
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TIME AND QUALITY COMPARISONS

RMSE on test set

1
1
L 0.75
0.75
L 0.5
05 ' F
0.25 i ------- ALAMO Lasso
0.25 I Lasso ) ----Glmnet ——A Lasso
----Glmnet —A Lasso SR .
------- Step B —Step F 0 E Step B Step F
0
1 100 10000 0.001 0.1 10 1000 100000
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CARBON CAPTURE SYSTEM DESIGN

lean
% COg-rich gas | compression
P e pre |
CO2-lean gas ¥ ! chain !
) : I
‘ H2 ] L

cold in

f

a1
I parallel trains
| |

r
cold out << - > warm d hot out
cold in — in ! «— hot in

A A

* <+— Steam
flue gas —» é—»D— ) —<
rich ?HB <~ i-— feed CO»

S f H1l 1 M
util in sorbent 2

* Discrete decisions: How many units? Parallel trains?
What technology used for each reactor?

* Continuous decisions: Unit geometries

* Operating conditions: Vessel temperature and pressure, flow rates,
compositions
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BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

Outlet gasT Solid feed
e
Cooling_>§
water —
CO, rich gas1 lCO2 rich solid outlet
 Model inputs (16 total) e Model outputs (14 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (5) - Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (3)
— Solid compositions (2) = Solid compositions (3)
— Flow rates (4) = Flow rates (2)

= QOutlet temperatures (3)

Model created by Andrew Lee at the National Energy Technology Laboratory
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Tsorb

out

Fgas

out

EXAMPLE MODELS - ADSORBER

| R Solid feed
-,
Cooling E
water | —
C02 rich gas 1Pin ngcl)llTb

=  1.0Py;40.0231 Ly, — 0.0187 In(0.167 Ly) — 0.00626 1n(0.667 vg;) —
51.1 xHCO32ds

Fgas
_ e (1.77-1071°) NX* 3.6 L LT 104
= . in ,.)/2 NX Tlgl?s ngrb FSOI‘b NX XHQO?,I?S
_ gas 9.75 T?I?rb gas gas gas msorb
= 0.797F* — — 0.77F$* xCO28%° + 0.00465 F£2° Tsorb —

g
0.0181 F£%° Tsorb x H208

Georgia Institute of Technology



SURROGATE MODEL RESULTS

no. of heat exchanger tubes | -

superficial gas velocity

gas outlet flow rate

gas outlet temperature -

gas outlet CO; fraction -
*gas outlet HoO fraction -
heat exchanger flow rate -
heat exchanger outlet temp. }
sorbent outlet temp. |
sorbent outlet HCOj3 -
sorbent outlet NH,COO
sorbent outlet H,O -

Georgia Institute of Technology

Normalized error

0% 5%

10% 0

Model size

20 40 60

underflow adsorber
| overflow adsorber

| overflow regenerator
underflow regenerator
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SYSTEM OPTIMIZATION

Mixed-integer nonlinear
programming model

coolln

solidLean

« Economic model

 Process model

* Material balances

* Hydrodynamic/Energy balances

* Reactor surrogate models

 Link between economic model coldin
and process model

* Binary variable constraints

* Bounds for variables

coolOut

gasOut

hotin

..... Underflow -
Technology

coldOut

Other Trains

) warmin
utilin
fgin flueln
— flueQut

warmQut feedCO2F
utilOut solidRich

MINLP solved with BARON
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EXTENSIONS

* Other metrics—LOL2 regularization, cross validation
 Thermodynamics (HELMET; idaes.org distribution)
— Equations of state
* Kinetics (RIPE; idaes.org distribution)
— Simultaneous mechanism and parameter estimation

* Symbolic regression

Georgia Institute of Technology
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CONCLUSIONS

* ALAMO provides algebraic models that are
v Accurate

v Simple
v' Generated from a minimal number of data points

 ALAMO'’s constrained regression facility allows modeling of
v' Bounds on response variables
v’ Variable groups
v’ Forthcoming: constraints on gradient of response variables

* Built on top of state-of-the-art optimization solvers

* Extends the applicability of algebraic optimization to
simulation- and experiment-based optimization

Georgia Institute of Technology 47



