

Supercritical Carbon Dioxide Power Cycle: Next Generation Power

Rocky Mountain AIChE March 19, 2013

Craig Turchi, PhD CSP Program, NREL craig.turchi@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

US National Laboratories

NREL's Areas of Research

Efficient Energy Use

- Vehicle Technologies
- Building Technologies
- Industrial Technologies

Renewable Resources

- Wind and water
- Solar
- Biomass
- Geothermal

Energy Delivery and Storage

- Electricity Transmission and Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

2100 employees (full-time and contract) 2012 budget \$405 million

National Renewable Energy Laboratory

- US and World Energy Resources
- Introduction to Concentrating Solar Power (CSP)
- Supercritical CO₂ Power Cycle
 - General attributes
 - Applications

US Electricity Sources

Energy Information Agency, Annual Energy Outlook, 2012

Solar is Growing

But, Solar is still Expensive

Levelized cost of electricity in nominal 2010 dollars. Wind and solar include no incentives. Energy Information Administration, Annual Energy Outlook 2012. June 2012, DOE/EIA-0383.

Energy Potential: Solar is the Gorilla in the Room

Total recoverable reserves are shown for the finite resources. Yearly potential is shown for the renewables. Values in Terawatt-years. (Perez & Perez, 2009.)

Power Towers Video

Torresol Energy 20 MW Gemasolar Seville, Spain

Power Towers under Construction: BrightSource 392 MW Ivanpah, California

Power Towers under Construction: SolarReserve 110 MWe Crescent Dunes, Nevada

Fast Facts:

- 10 hours of thermal energy storage
- 195-m tall tower
- 600 construction jobs; 45 permanent jobs
- 1600-acre site
- Hybrid cooling

Looking down at the storage tank foundations

Value of CSP with Thermal Energy Storage

Supercritical CO₂ Brayton Cycle

Open Brayton Power Cycle

National Renewable Energy Laboratory

Closed Brayton Power Cycle

Brief History of the Closed Brayton Cycle (CBC)

- 1939 First commercial CBC at Escher Wyss in Zurich (2 MW, air)
- 1949 Air CBC efficiency greater than contemporary steam cycles
- 1956-1977 Ravensburg air CBC accumulates 120,000 hrs operation at average 91% availability
- 1967 Feher catalogs candidate supercritical fluids for use in CBC
- 1968 Angelino proposes s-CO₂ power cycles including the "recompression" cycle
- 2006 Dostal rekindles interest in s-CO₂ CBC by examining its use for Gen IV nuclear power plants
- 2009 Sandia National Labs builds 250 kW recompression cycle at Barber-Nichols in Arvada, CO
- 2012 Echogen Power Systems designs 7 MW s-CO₂ system for waste heat recovery
- 2012 SunShot funds testing of ~10 MW high-temp s-CO₂ turbine

Attractive features of s-CO₂ Brayton Cycle

- Simpler cycle design than steam Rankine
- Higher efficiency than steam Rankine
- High density working fluid yields compact turbomachinery
- Optimum turbine size 10 to 300 MWe
- Low-cost, low toxicity, low corrosivity fluid
- Thermally stable fluid at temperatures of interest to CSP (550C to 750C)
- Single phase reduces operational complexity

"Simple" s-CO₂ Brayton Cycle

S-CO₂ Recompression Brayton Cycle

Parma, et al., "Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept," SAND2011-2525, May 2011.

S-CO₂ Brayton has Potential in Multiple Markets

Power Sector	Why?	Who?
Nuclear	Good match to Gen IV sodium fast reactor designs	Sandia, Argonne, INEL
Fossil	Next generation coal plants with oxy-fuel combustion and CO2 capture	NETL, Pratt & Whitney Rocketdyne (PWR)
Marine Power	Compact and fast responding turbomachinery	Knolls and Bettis Atomic Power Labs
Waste Heat Recovery	Simple cycle design with high efficiency	Echogen, Dresser- Rand
Solar	Allows for higher conversion efficiency in high-temperature power towers	NREL, PWR
Grid Electricity Storage	Reversible cycle: heat pump / power turbine	ABB

Oxy-Fuel Combustion and CCS Application

S-CO2 Turbomachinery Technology Development for Power Plant Applications, Pratt & Whitney Rocketdyne, RD11-159

Oxy-Fuel Direct Combustion Application

Nuclear Power Applications

- Under investigation by Generation IV nuclear power researchers in US, Europe and Asia
- Applicable to multiple Gen IV reactor concepts

Picard, Supercritical CO2 Power Cycle Symposium, 2009.

US Department of Energy SunShot Initiative

"The SunShot Initiative will spur American innovations to reduce life costs of solar energy and re-establish U.S. global leadership in this growing industry." U.S. Energy Secretary Steven Chu February 2011

- DOE's SunShot Initiative aims to make solar electricity cost-competitive with conventional forms of energy before 2020.
- Reducing the costs of utility, commercial and residential installations by approximately 75% could enable widespread deployment of solar energy.
- Coordination among the DOE Solar Program, Office of Science, and ARPA-E.

National Renewable Energy Laboratory

CSP System Efficiency

Maximizing efficiency requires maintaining good collection efficiency while moving to higher conversion temperatures.

Power Cycle Options for CSP

Solar Thermal Power Application

Demonstrating s-CO₂: Pilot Test Catch-22

An optimized 20 kW prototype s-CO₂ turbine is 1/4" diameter and spins at 1,500,000 rpm

A manufacturable s-CO₂ prototype turbine of 6" diameter spinning at 20,000 rpm produces 10 MW and requires a ~\$20M support facility

S. Wright, *Mechanical Engineering*, Jan 2012

10 MW s-CO₂ Turbine Test

Objectives:

 Design, fabricate and validate a s-CO₂ Brayton cycle that is capable of operation at up to 700C and dry cooling conditions

Echogen's EPS100 process skid

- 2. Validate and map power turbine and compressor performance
- 3. Simulate advanced CSP/s-CO₂ system performance and estimate LCOE to meet SunShot goals

s-CO₂ Brayton Cycle Research Needs

- Corrosion and materials compatibility data at high T, P
- Long-term testing of recuperators
- Design and validation of primary heat exchangers; understanding of s-CO₂ / HTF interactions
- Validation of power turbine bearings, seals, stopvalves
- Cycle models of transient operation, start/stop, offdesign operation
- Demonstration of cycle operations and equipment durability

Thank you!

For more information: http://www.nrel.gov/csp/ http://maps.nrel.gov/ http://solareis.anl.gov/

Craig Turchi Concentrating Solar Power Program 303-384-7565 craig.turchi@nrel.gov

NREL's trough module test facility

Support slides

Why 10 MWe Scale?

 10 MW is the minimum size that allows use of commercial design technologies

F actor	Power (MWe)						
Feature	0.3	1.0	3.0	10	30	100	300
Turbine Speed/Size	75,000 / 5 cm		30,000 / 14 cm	:	10,000 / 40cm		3600 / 1.2 m
-	Single stage		Radial		multi stage		
Turbine type				sin	ngle stage	Axial	multi stage
Pearings	Gas	Foil			Hydrod	ynamic o	bil
Dearings			Magnetic			Hydrost	atic
Seals	A	dv labyl		110		Dry lift of	f
				-		-	
Freq/alternator	Permanei	nt Magn	et			Wound,	Synchronous
	Gearbox, Synchronous						
Shaft	Dual/Multiple				1		
Configuration					Sii	ngle Sha	ft

CSP Plant Characteristics

	Deployed		Future Opportunities (Towers)			
CSP Design and primary Heat Transfer Fluid	2010 Oil Trough	2013 Salt Tower	Supercrit. Steam	Air Brayton Cycle	S-CO ₂ Brayton Cycle	
Performance Data:						
Turbine MW _e (Range)	50-125	20-110	400+	0.3-200	10-150	
Receiver T/P (°C/bar)	391/100	565/140	610/250	1300/30	700/250	
Power Cycle Gross Effic.	0.38	0.42	0.47	0.40	0.50	
Thermal Storage Options	Oil, Salt	Molten salt	Molten salt	Ceramic blocks	Molten salt	
Cost:						
LCOE (cents/kWh, no ITC)	19	15	11	<10?	<10?	

LCOE = levelized cost of electricity

ITC = investment tax credit

Journal Publications on s-CO₂ Brayton Cycle

Solar Potential in the Southwest

Solar Potential in Southwest US: 6,900 GW (6x current US generation capacity) 16 million GWh (4x current US annual electricity consumption)

Assumptions: DNI Solar Resource ≥ 6.75 kWh/m2/day Plant footprint = 5 acres/MW Annual capacity factor = 27%

Map represents land that has no primary use today, excludes land with slope > 1% and excludes known environmentally or culturally sensitive lands.

Thermal Inertia

Comparison of power output from large CSP and PV plants located within 50 km of each other.

Mehos, et al., IEEE Power & Energy Magazine, May/June 2009.

Projects List from SEIA

http://www.seia.org/map/majormap.php

Unsubsidized CSP Trough and Tower Costs

Assumed location is Daggett, CA

Solar Energy Potential

	Energy potential Reserves/Resources ²	Thereof conven- tionally utilizable ²	
Coal	~ 135.000 EJ		Solar radiation
Natural	gas ~ 60.400 EJ	~ 12.000 EJ	Wind energy
Crude o	oil ~ 23.000 EJ	~ 9.800 EJ	Biomass
		•	Geothermal

	Energy potential (amount of energy p. a.) ²	technologically utiliz- able (state of the art) ²
Solar radiation	~ 1.111.500 EJ	~ 1.482 EJ
Wind energy	~ 78.000 EJ	~ 195 EJ
Biomass	~ 7.800 EJ	~ 156 EJ
Geothermal	~ 1.950 EJ	~ 390 EJ
Hydro/tide power	~ 1.170 EJ	~ 78 EJ

University of Twente, Netherlands, http://www.utwente.nl/mesaplus/nme/Introduction/

Global energy demand 2006: ~ 470 EJ