

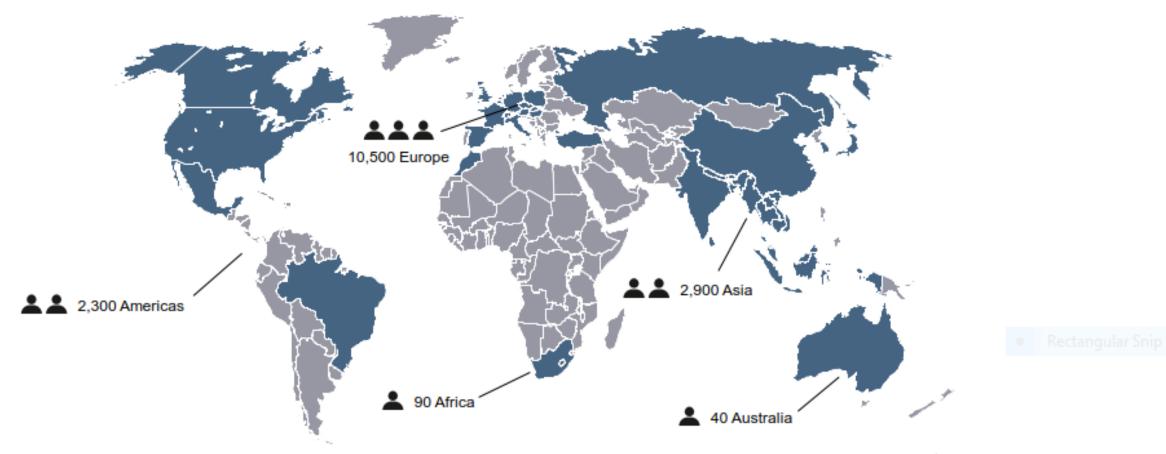
A SINGLE SOURCE ADDRESSING MULTIPLE WAYS TO FIGHT POLLUTANTS WHILE IMPROVING ENERGY EFFICIENCY

December 6, 2022 www.DurrMegtec.com

Nina B. Zerman - Senior Manager

AGENDA

- 1- Company Overview & Dürr CTS Global Mission for Industries
- 2- Air Pollution Abatement Technologies
- 3- VOC Abatement Technologies
- **4- Thermal Oxidizer Technologies**
- 5- Typical Emission Requirements
- 6- Specific Thermal Oxidizer Technologies
 - A- Direct Fired Thermal Oxidizer
 - **B- Recuperative Thermal Oxidizer**
 - **C-** Regenerative Thermal Oxidizer
- 7- Q & A



Corporate Overview

GLOBAL POSITIONING

Approx. 17,000 employees¹ at 120 locations in 35 countries

1 incl. around 800 external employees

CAPABILITIES & PURPOSES

- To help our customers prosper by staying in compliance with environmental regulations and public image.
- To provide our customers with maintenance-free operations, minimized downtime, and superb aftermarket services. Strong after-market support.
- To contribute to a clean environment and public health through delivering the most innovative and energyefficient environmental solutions
- We let you focus on your business while we handle the business of air pollution control.

CLEAN TECHNOLOGY SYSTEMS (CTS) LOCATIONS

North America

Southfield, Michigan

- Oxi.X RL _ (Rotary RTO)
- Oxi.X DF_ (Direct Thermal)
- Oxi.X TR_ (Thermal Recup)
- Cat.X CF_ (Concentrator)
- Cat.X CR_ (SCR)

De Pere, Wisconsin

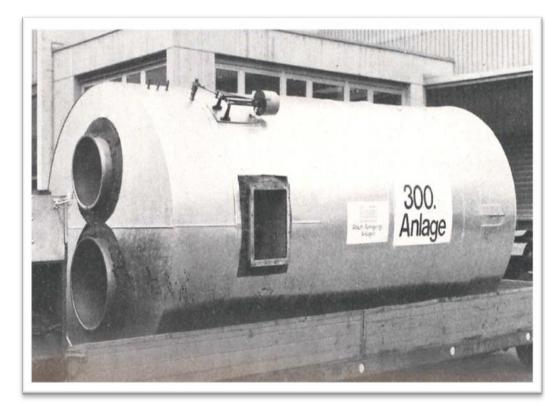
- Oxi.X RC_ (Rotary RTO)
- Oxi.X RM_ (Poppet RTO)
- Oxi.X RV_ (Flameless RTO)
- Cat.X PL_ (Recuperative Catalytic)
- Cat.X HP_ (Straight Catalytic)

Waterloo, Canada

- Part.X PW_(WESP)
- Part.X PV_ (Venturi Scrubber)
- Sorpt.X SW_ (Acid Gas Scrubbers)
 - (Open Spray, Packed Towers, Atomized Scrubbers)
- Sorpt.X AC
 - (Evaporative Gas Cooling)
- Cat.X CR_ (SNCR)

Vero Beach, Florida Columbus, OH

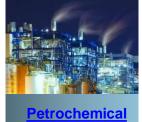
- Sorpt.X_ CA (Carbon Adsorption)
- Sorpt.X_LD (Distillation)
- Sorpt.X _ LC (Liquid Condenser)

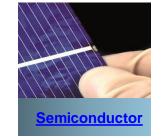

TREATING 700,000 SCFM PROCESS FLOW (1,120,000 NM3/HR)

AIR POLLUTION CONTROL

MARKET SEGMENTS

CLEAN TECHNOLOGY SYSTEM



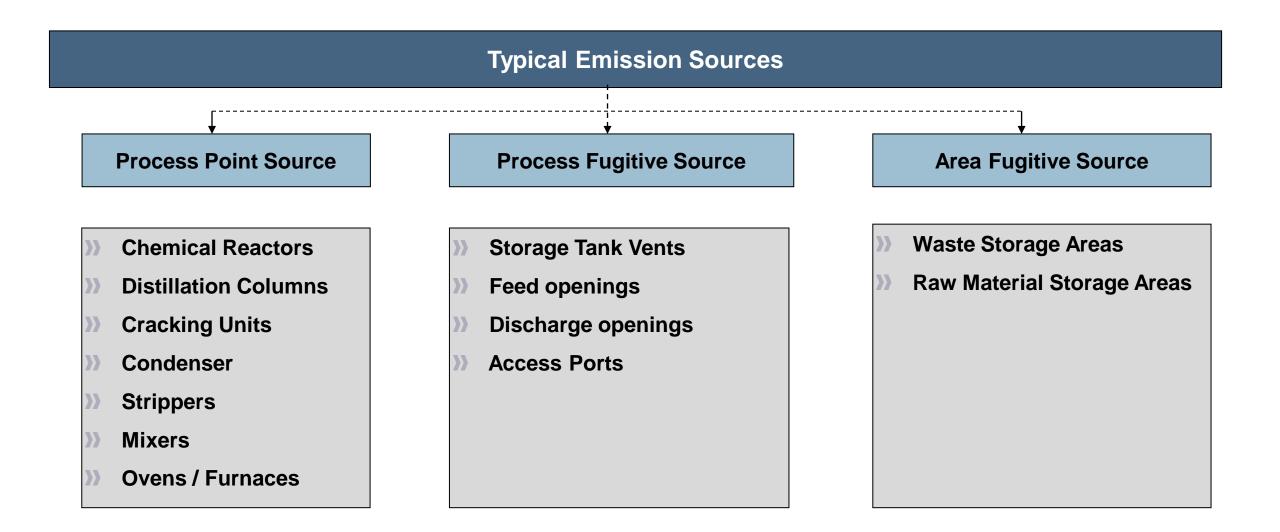


SOLUTIONS

Engineering and Operations

Engineering and Operations

DURR AIR POLLUTION CONTROL FOR INDUSTRIES


Environmental Solutions

EMISSION	TECHNOLOGY
Particulate	 Pulse jet fabric filter/baghouse Wet and dry ESPs Multiclone® dust collector Wet particulate scrubbers
NOx	<pre>>> SCR >> SNCR</pre>
SO₂/acid gases	Wet scrubbers/acid gas absorbersSpray dry absorbersDry sorbent injection
Acid mists	Wet ESPsDry sorbent injection
VOCs, CO, HAPs	 Regenerative thermal oxidizers (RTOs) Regenerative catalytic oxidizers (RCOs) Catalytic recuperative oxidizers
Odor	OxidizersAdsorption systems

GENERAL POLLUTANT SOURCES

SIDE PRODUCTS OF COMBUSTION

COMPLETE COMBUSTION

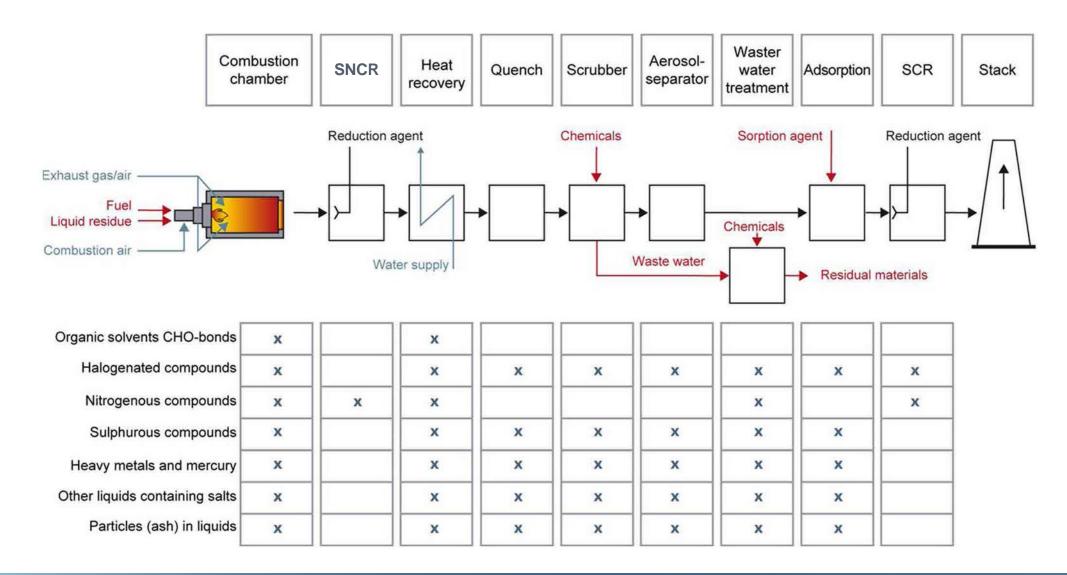
ACRYLONITRILE

 $C3H3N + 19/4 O2 \rightarrow 3CO2 + 3/2 H2O + NO2$

METHYL MERCAPTAN

 $CH4S + 3O2 \rightarrow CO2 + 2H2O + SO2$

VINYL CHLORIDE


C2H3Cl + 11/4 CO2 \rightarrow 2CO2 + 3/2 H2O + HCl

TECHNOLOGIES USES

Dürr solutions and products-pre & post oxidizer

DERIVATIVES & TYPICAL APPLICATIONS

- > PTA- Purified Terephthalic Acid -raw material for manufacturing PET (Polyethylene Terephthalic), PBT (Polybutylene Terephthalic) and PTT (Poly Trimethylene Terephthalic)
- > PET- Polyethylene Terephaltate, plastic bottles
- > Polyethylene HDPE, LDPE, LLDEP
- > ABS- Acrylonitrile Butadiene Styrene- pipes, for application that extrusion is required
- > **EPDM**, Ethylene Propylene Diene Monomer roofing
- > SSBR, Solution styrene Butadiene Synthetic synthetic rubber, car tires
- ➤ NBR, Nitrile Rubber, Copolymer of acrylonitrile and butadiene. For construction, seals, grommets
- > PBR, Polybutadiene synthetic rubber, for golf balls, tires, plastics
- > EVA- Ethylene Vinyl Acetate- Co polymer of ethylene and vinyl acetate, used for elastic characteristic
- > POSM- Propylene Oxide Styrene Monomer- similar to some styrene applications
- > EO/EG- Ethylene Oxide and Ethylene Glycol- used in Polyester fiber, PET

Engineering Corp Overview

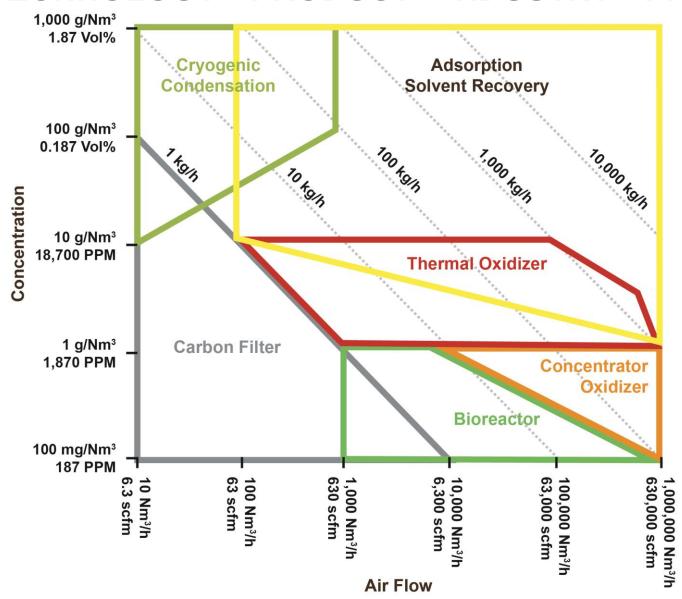
Design codes and guidelines:

Controls and Electrical Design

- National Fire Protection Association (NFPA) 70 - National Electric Code
- NFPA 79 Electrical Standards for Industrial Machinery
- NFPA 86 Industrial Ovens and Furnaces
- UL508A Industrial Control Panels
- Dürr Systems UL File E56711 Industrial Control Panels
- FM Global Loss Prevention Data Sheets
- 6-9 Industrial Ovens and Dryers
- 6-11 Fume Incinerators

Mechanical Systems and Component Design

- Compressed Air Tanks American Society of Mechanical Engineers (ASME) - Code for Pressure Vessels, Section VIII, Division 1, "U" Certificate of Authorization No. 16802
- Fixed Ladders Occupational Health and Safety Administration (OSHA) Standard 29 CFR1910.23
- Walking and Working Surfaces OSHA Standard 29 CFR1910 subpart D
- Mechanical Power Transmission Guards OSHA Standard 29 CFR1910.219
- Ductwork Sheet Metal and Air Conditioning Contractors' National Association (SMACNA) – Round or Rectangular Industrial Duct Construction Standards
- Centrifugal Fans American National Standards Institute (ANSI)/Air Movement & Control Association (AMCA) Standard 210-99 – "Laboratory Methods of Testing Fans"



TECHNOLOGY MAP

*EMISSIONS *TECHNOLOGY * PRODUCT * INDUSTRY * PROCESS

TYPICAL EMISSION & SPECS REQUIREMENTS IN USA

○ **VOC DRE: 90-99.9%**

NOx: 0.072-0.036 lbs/MMBtu

SOx: Not typically required with TO technology

CO: 50 ppmv at outlet

Residence Time: 0.3-2.0 seconds

Operating Temperature: 1450-1800 °F

Particulate: 0.1 gr/dscf

Component	Durr Standard	Optional
-	NFPA 86	Орионал
Gas Train - Design	NFFA 60	
C Ti- A i	05.01-1-11.41	
Gas Train - Approval	GE Globabl Assest	
	Protection Services (GAPS),	
	replaced Industrial Risk	
	Insurers (IRI)	
	Factory Mutual (FM)	
Gas Train - Fabrication	General good practices	
		ASME B31.3
Ductwork – Design &	SMACNA	
Construction		
FAN	AWS D14.6	
	AMCA 210	
		API 560
		API 673
		AMCA 203
RTO & Skid	AWS D1.1	NDE
		ASME VIII DIV 1
DFTO Combustion	AWS D1.1	
Chamber		
	+	ASME VIII DIV 1
	+	API 560
	+	711 1 000
DFTO (vertical)	ASME STS-1	
Di 10 (ventical)	70112 010-1	
Exhaust Stack	ASME STS-1	
EXHAUST STACK	MOINE 010-1	
i		

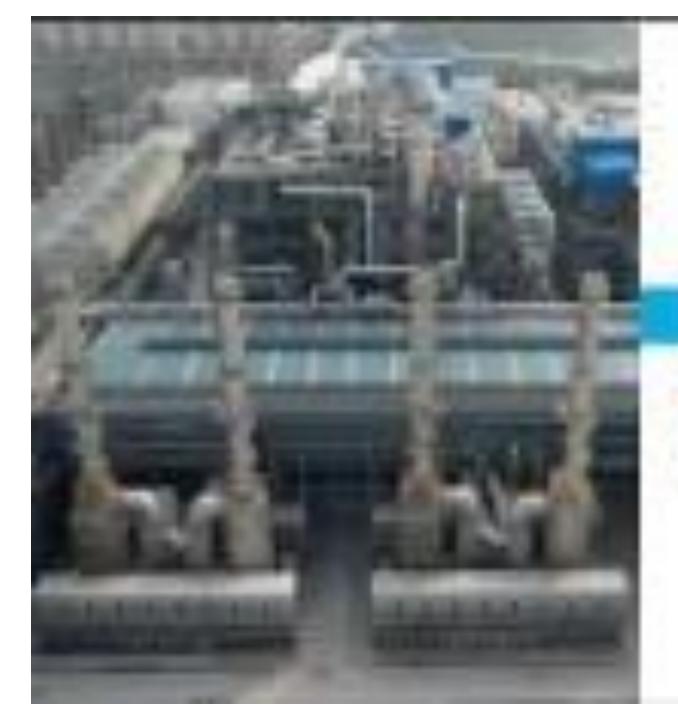
OVERVIEW: OXIDIZERS FOR VOC CONTROL

	Direct Fired Thermal Oxidizer (VAR)	Thermal Recuperative Oxidizer (TAR)	Recuperative Catalytic Oxidizer (RCO)	Regenerative Thermal Oxidizer (RTO)
VOC DRE	99+%	99+%	98-99%	98-99.3%
Typ. Operating Temperature	1550-1800°F	1400-1450°F	600-850°F	1550-1600°F
Thermal Efficiency	0%	55-65%	55-65%	93-97%
LEL Range	45% +	5-25%	0-10%	0-25%
Capitol Cost		-	+	+ +
Operating Cost	++	+	-	
Condensable	Good	Good	Ok	Ok
Particulate	Best	Better	Poor	Good
Moisture	Best	Better	Ok	Good
Corrosive	Ok	Ok	Ok	Ok

DURR SINGLE SOURCE APC SYSTEMS

Pharma	
Location:	Grimsby (United Kingdom)
Process:	Halogenated HC, Nitrogen compounds
Air flow rate:	5,000 Nm ³ /h & 10,000 Nm ³ /h
Pollutants:	Dichlormethane, chloroform, acetone, MEK, acetonitrile
Concentration	200 g/Nm ³
Dürr Solution:	2 Oxi.X DFTO, Scrubber, SCR
Commissioni ng:	2007

DURR SINGLE SOURCE APC SYSTEM



Chemical	
Location:	Mumbai (India)
Process:	Nitrogen bound HC
Air flow rate:	5,000 Nm ³ /h
Pollutants:	Acetonitrile, Acetone, Butanol, Styrene
Concentration:	750 g/Nm3
Dürr Solution:	Oxi.X DF, Scrubber, SCR
Commissioning	2014

Air pollution control for PTA production

DURR VAR- DIRECT FIRED THERMAL OXIDIZER

DIRECT FIRED THERMAL OXIDIZER

Standard VOC Destruction Rate	99.9+%
Thermal Efficiency	0%
Flue Gas Capacity/One Unit	500 to 80,000 SCFM
Optional Heat Recovery Available	Hot Air, Steam, Glycol, Oil

- » Applications are high concentrated streams (sized on BTU concentrations)
- » Ideal for high BTU concentrated streams 45% + LEL
- » High heat recovery potential

OXI.X DF – DIRECT FIRED THERMAL OXIDIZER

Horizontal oxidizer with air quench – packaged for containerized shipping

RECUPERATIVE THERMAL OXIDIZER

Standard VOC Destruction Rate	99+%
Thermal Efficiency	55-65%
Internal Heat Exchanger	Pre-Heats the Inlet Air
Simplicity	Burner and Internal Tubes
Flow Capacity	Up to 2,000-20,000 SCFM
Optional Heat Recovery Available	Hot Air, Steam, Glycol, Oil

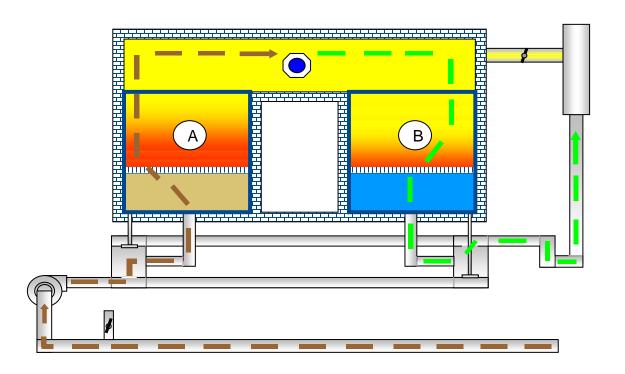
- » Applications are (LVHC-HVHC) low-high volume, higher concentrated streams
- » Ideal for medium-high BTU 5-25% + LEL
- » High heat recovery potential

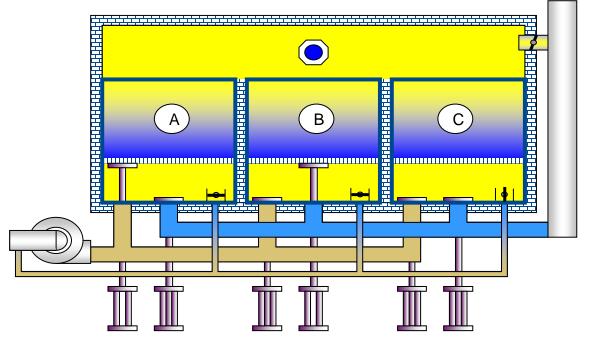
RECUPERATIVE THERMAL OXIDIZER – OXI.X TR

Typically pre-assembled and compact oxidizer

Consists of:

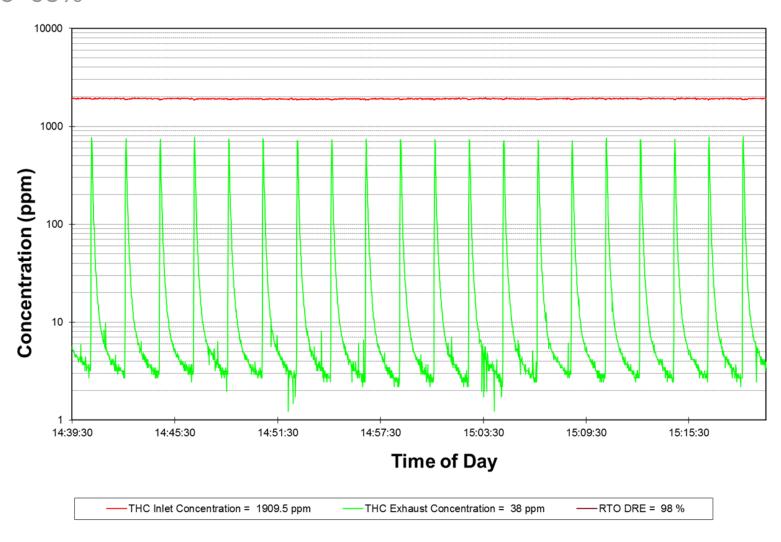
- Combustion chamber
- >>> Burner
- Shell and tube heat exchanger
- >> 99% destruction efficiency
- Variable heat exchanger designs available from 55% to 65%
- Low pressure drops
- Simple to operate and maintain
- Standard raw gas burner offers lower operating costs than similar units installed with combustion blowers


ENERGY CONSERVATION AND SUSTAINABILITY



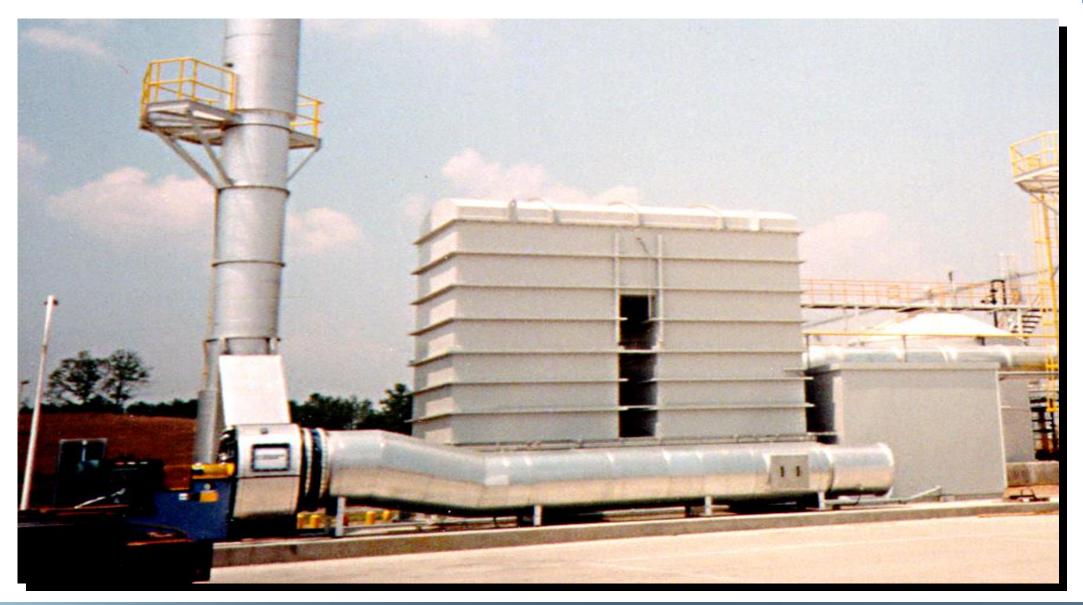
REGENERATIVE THERMAL OXIDIZER

DUAL & MULTIPLE CHAMBER RTO

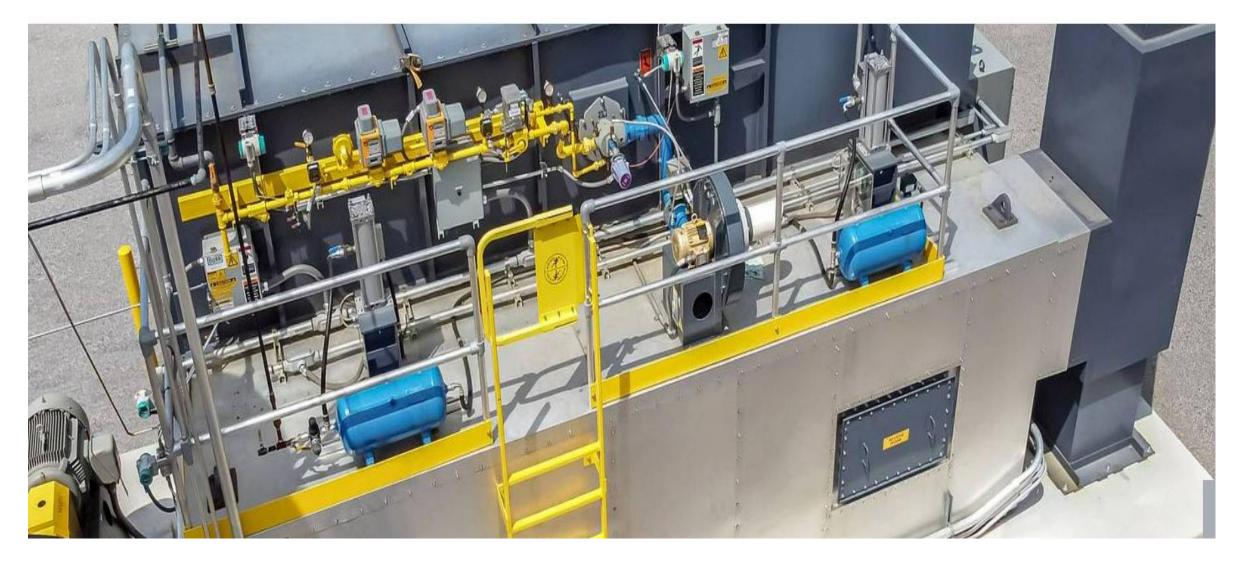

Oxi.X RM MILLENNIUM® RTO

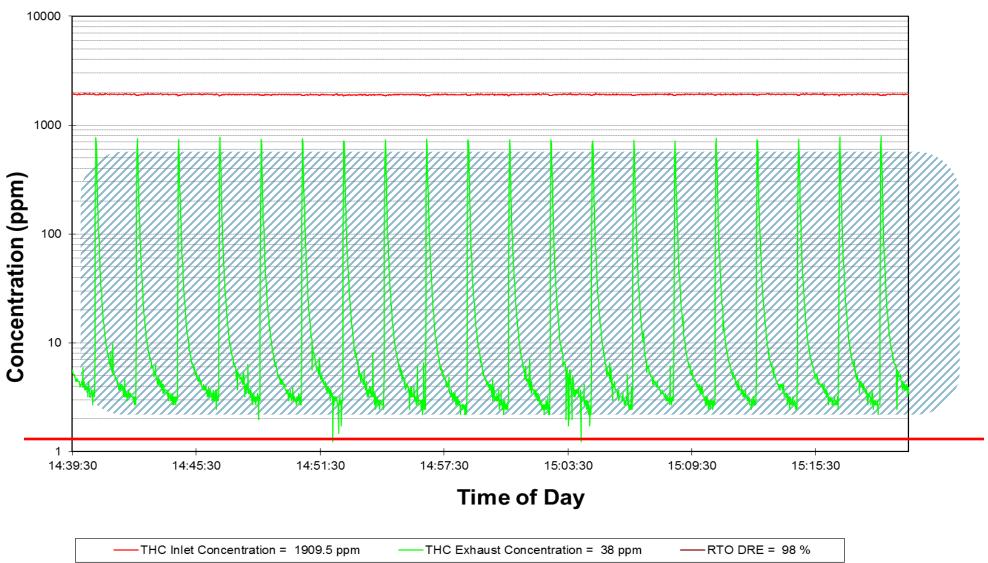
Oxi.X RE Epsilon® RTO

2-TOWER RTO VOC (THC) EMISSION TESTING RESULTS



VOC DRE - 95~98%

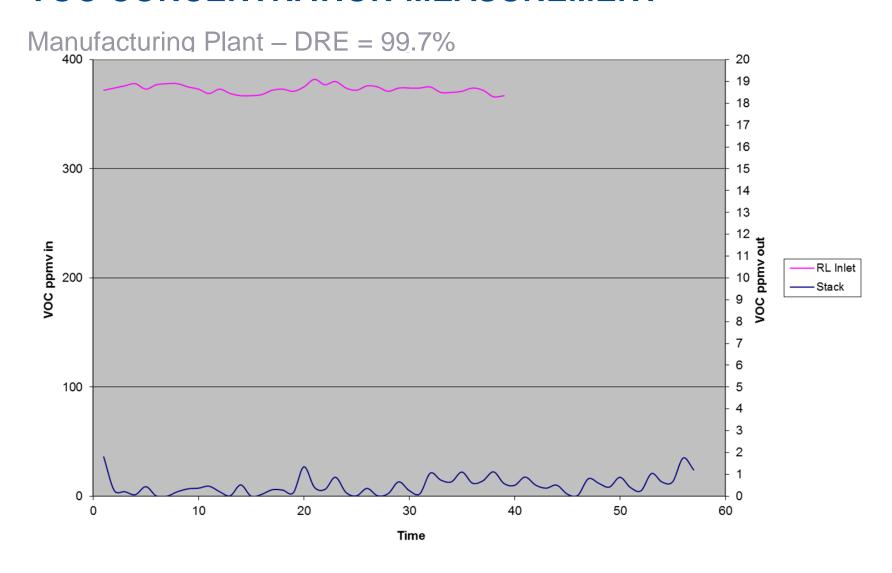

DÜRR 2 TOWER RTO SYSTEM


OXI.X RM - DÜRR 2 TOWER RTO SYSTEM

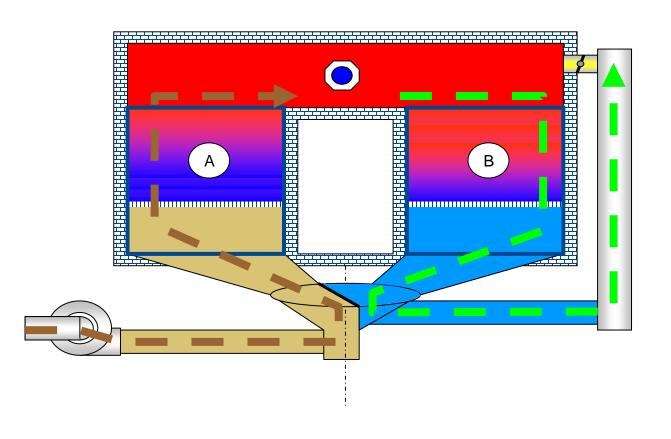
2-Tower RTO VOC (THC) Emission Testing Results VOC DRE - 95~98%

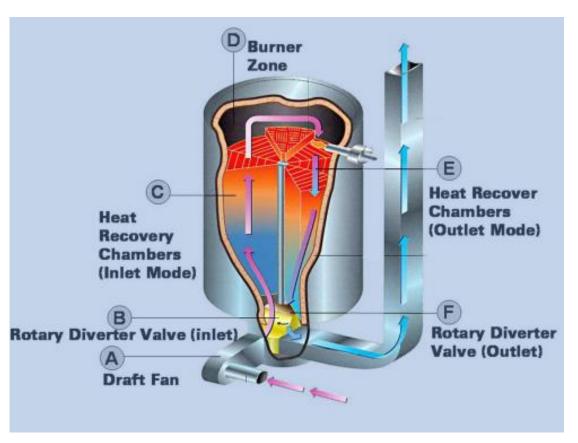
DÜRR 3 TOWER RTO SYSTEM

OXI.X RA 3 TOWER RTO SYSTEM

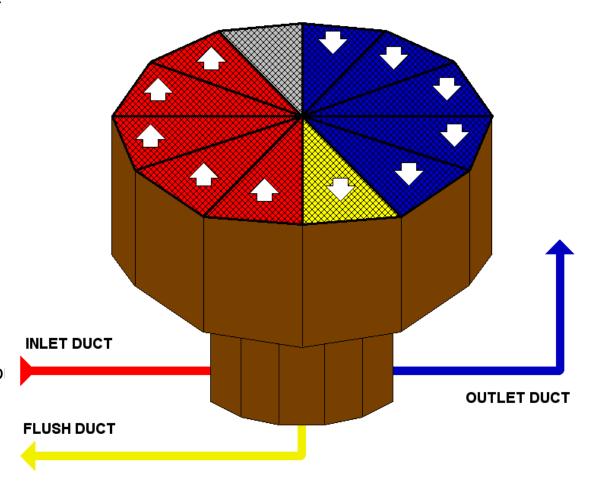

RESPONDING TO CUSTOMER WANTS

- Smaller size
- Less moving parts
- Lower purchase price
- Higher performance
- Cheaper to operate
- Easier to operate/maintain
- Quicker installation
- One Medica Chamber
- One Moving part
- Preassembled
- Skid-mounted


DÜRR OXI.X RL ROTARY VALVE RTO SYSTEM VOC CONCENTRATION MEASUREMENT



DUAL & SINGLE CHAMBER ROTARY RTO


CleanSwitch® RTO

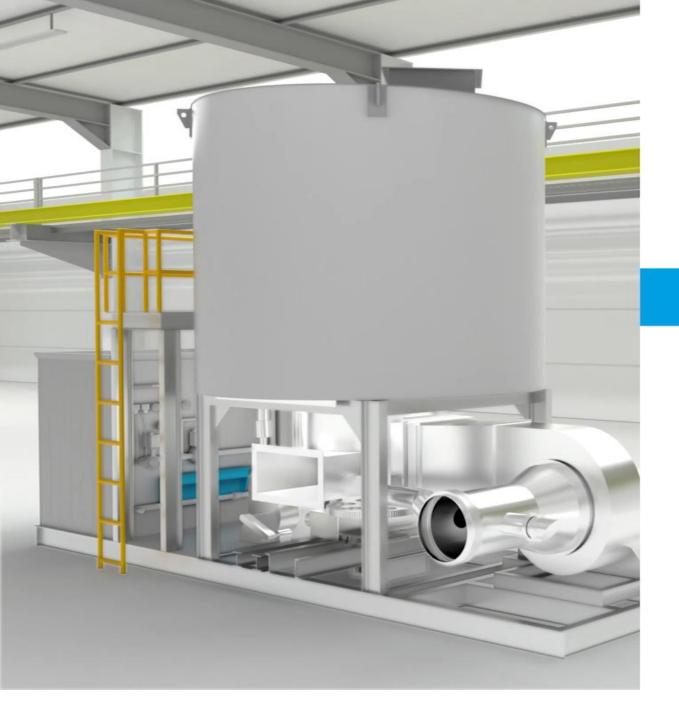
ECOPURE RL® RTO

ROTARY VALVE AND FLOW THROUGH THE BEDS

- •The purpose of the rotary valve is to direct air in the appropriate direction through the ceramic media beds.
- •There are 12 beds. At any give time:
- (5) beds are in Outlet Mode
- (5) beds are in Inlet Mode
- (1) bed is in Flush Mode
- (1) bed is in Blocked/Dead Mode
- •For any bed the sequence is: Inlet-flushoutlet-blocked
- •The typical index rate is 15 seconds (15 seconds * 12 beds = 180 seconds for complete a rotation).
- •Note that a bed is in inlet or outlet mode for five indexes. Therefore, a bed is each of those modes for 75 seconds.

OXI.X RL ROTARY VALVE RTO SYSTEM DESTRUCTION EFFICIENCY TEST REPORT

Table 1
Prime Coat Oven RTO Performance Testing
Total and Non-Methane Hydrocarbons


Chicago, Illinois Clayton Project No. 13-03095.00 October 16, 2002

Parameter	Run 1	Run 2	Run 3	Average	
Sampling Time	7:23 - 8:23 9:22 - 10:22		10:32 - 11:02		
Inlet Gas Stream Volumetric Flowrate (scfm)	15,528	15,780	16,404	15,904	
Outlet Gas Stream Volumetric Flowrate (scfm)	20,606	19,256	18,130	19,331	
Inlet THC Concentration (ppmv C ₃ H ₈) Inlet THC Mass Flowrate (lb/hr C ₃ H ₈)	143	152	144	146	
	15.9	17.1	16.9	16.6	
Outlet THC Concentration (ppmv C ₃ H ₈) Outlet Methane Concentration (ppmv CH ₄) Outlet Methane Concentration (ppmv C ₃ H ₈) Outlet NMHC Concentration (ppmv C ₃ H ₈) Outlet NMHC Mass Flowrate (lb/hr C ₃ H ₈)	0.5	0.5	0.5	0.5	
	0.2	0.2	0.3	0.2	
	0.1	0.1	0.1	0.1	
	0.4	0.4	0.4	0.4	
	0.06	0.06	0.05	0.06	
Destruction Efficiency (%)	99.6	99.7	99.7	99.7	

3 x 60,000 SCFM Oxi.X RL Unit

High-efficiency RTO with rotary valve Oxi.X RL

Regenerative Thermal Oxidizer Oxi.X RA

OXI.X CS CLEANSWITCHTM ROTARY VALVE RTO SYSTEM

Installation

- Rotary style valve
- Twin media beds
- Modular construction
- Simple and economical installation.

OXI.X RL ROTARY VALVE VS. MULTI-TOWER

1998 60,000 SCFM Rotary RTO

1988 20,000 SCFM VF

HOT GAS BYPASS SYSTEM

- Variable Energy Recovery
- Allows RL to handle a wide range of VOC loading
- Utilizes a high burner chamber temperature control loop
- Allows hot gas to bypass exhaust bed
- Temporarily reduces the thermal efficiency, thereby allowing higher solvent concentrations to be processed

Operating Cost Comparison Example:

Process Exhaust Volume : 50,000 scfm (1416 cmm)

Process Exhaust Temperature : 75°F (24°C)

VOC Concentration : 200 ppm = (140 lb./hr = 63.5 kg/hr)

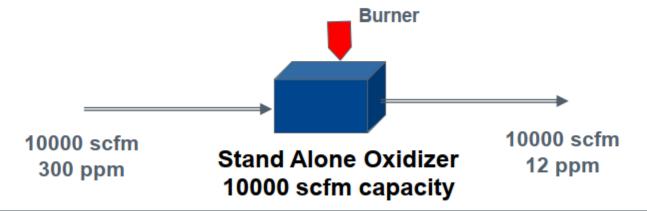
Avg. Molecular Weight : 90 kg/kg mole

Solvent (VOC) Heating Value : 33,000 Btu/kg

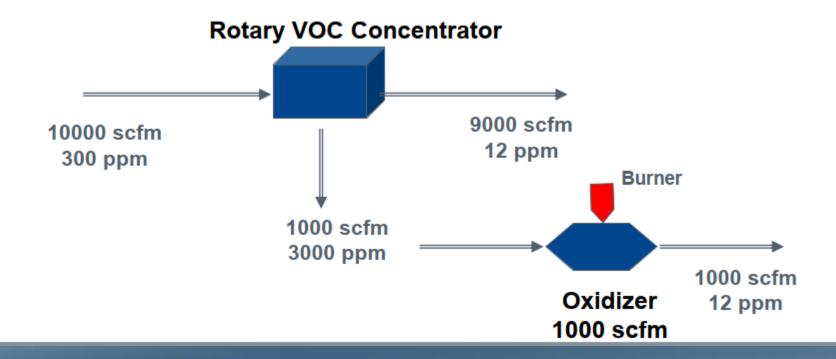
Annual Operating Hours : 8,760

Fuel Cost : \$5.00/MMBtu (\$0.18/m³) Natural Gas

Electricity Cost : 0.06/kWh

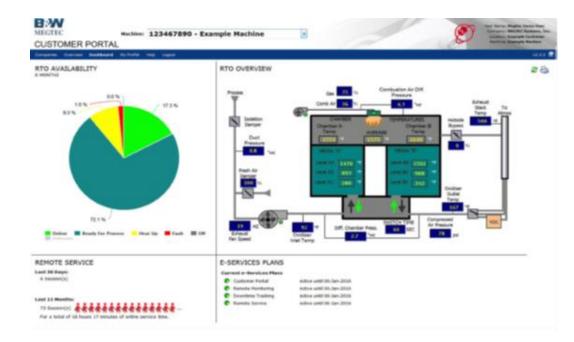

Operating Cost Comparison

	Electricity			Fuel			Total	
VOC Control System	kW	\$/hr	\$/yr.	m³/hr	\$/hr	\$/yr.	\$/hr	\$/yr
Recuperative Thermal Oxidizer	125	7.5	65,700	564	101.5	889,315	109	954,840
Recuperative Catalytic Oxidizer	125	7.5	65,700	369	66.42	581,840	73.92	647,539
Regenerative Thermal Oxidizer	125	7.5	65,700	96	17.28	151,372	24.78	217,073
Regenerative Catalytic Oxidizer	109	6.54	57,290	34	6.12	53,611	12.66	110,902
VOC Concentrator System	34	2.04	17,870	0.0	0.0	0.0	2.04	17,870



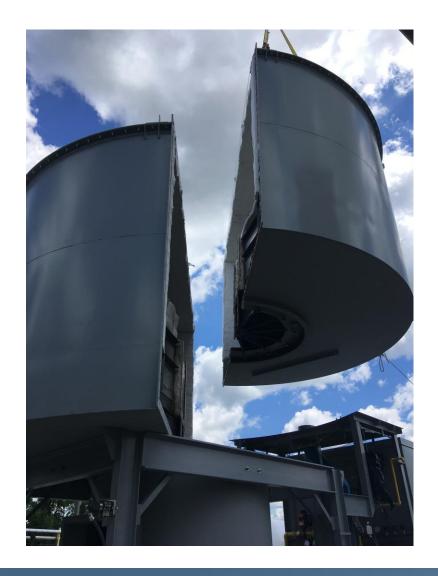
How concentrator help in savings?

Without concentrator


With concentrator

CUSTOMER CARE CENTER

- VPN connection for trending, monitoring and remote diagnostics
- 24/7 Parts, Technical & Service Support
- Parts dispatching
- Spare Parts Inventory:
- Preventive Maintenance Services
- Customer Care Programs
- In-House Operational & Maintenance Workshops



RL INSTALLATION (CHAMBER LOWER SECTION)

Combustion Chamber –lower Section

OVERVIEW OF WHAT WE DISCUSSED

- 1- Company Overview & Dürr CTS Global Mission for Industries
- 2- Air Pollution Abatement Technologies
- **3- VOC Abatement Technologies**
- **4- Thermal Oxidizer Technologies**
- **5- Typical Emission Requirements**
- 6- Specific Thermal Oxidizer Technologies
 - A- Direct Fired Thermal Oxidizer
 - **B- Recuperative Thermal Oxidizer**
 - **C- Regenerative Thermal Oxidizer**
- 7- Q & A

Nina Zerman – Senior Manager – Key Account Manager

Address: Durr Systems Inc.

26801 Northwestern Highway Southfield, Michigan, 48033

Phone: 248-921-2804

Email: Nina.zerman@durrusa.com

Web: www.durr-megtec.com

THANK YOU!