

The Eight Steps to Specify a Catalyst Bed

Gary Gildert for the East Tennessee Local Section of the AIChE November 4, 2014

Johnson Matthey

Overview

- A speciality chemicals company and a world leader in sustainable technologies
- Origins date back to 1817, floated 1942, FTSE 100 company since June 2002
- £11.2 billion revenue and underlying profit before tax* of £427.3 million for year ended 31st March 2014
- Operations in over 30 countries with around 12,000 employees
- Leading global market positions in all its major businesses

^{*} Before amortisation of acquired intangibles, major impairment and restructuring charges and profit or loss on disposal of businesses and, where relevant, related tax effects.

Our Strategy

JM 🛠 Johnson Matthey **Process Technologies**

Technology leadership forms the basis of Johnson Matthey's strategy to deliver superior long term growth

Divisional Structure

JM 🐼 Johnson Matthey

Emission Control Technologies

- Light Duty Catalysts
- Heavy Duty Catalysts
- Stationary Emissions
 Control

Precious Metal Products

Services

- Platinum Marketing and Distribution
- Refining

Manufacturing

- Noble Metals
- Colour Technologies
- Chemical Products

Fine Chemicals

- Active Pharmaceutical Ingredient (API) Manufacturing
- Catalysis and Chiral Technologies
- Research Chemicals

New Businesses

- New Business Development
- Water
- Battery Technologies
- Fuel Cells

Process

Chemicals

Syngas

Oil and Gas

Refineries

Purification

٠

٠

•

•

Technologies

JM Davy Technologies

Chemical Catalysts

(inc. Formox)

Process Technologies

A global supplier of catalysts, licensing technologies and other services to the petrochemical, syngas, oil refining and gas processing industries.

Chemical Catalysts

Overview, Markets and Segments

- Fixed bed supported catalysts in base metals (e.g. Ni, Cu, Co, Zn) from Oberhausen, Emmerich (Germany) and Clitheroe (UK)
- Ni catalysts for edible oils & oleochemicals from Emmerich (Germany) and Taloja (India)
- Sponge Metal[™] catalysts from Tennessee (USA)
- Supported precious metal catalysts from Royston (UK) and West Deptford (USA)

JM

Johnson Matthey

Process Technologies

JM Johnson Matthey Process Technologies

Internationally recognized expert in hydro treating with 24 patents and over 40 publications

- Bachelor of Applied Science (Ch.E.), University of Waterloo 1981
- Masters of Business Administration, Rice University in 2005
- Registered professional engineer in Ontario, Canada (1986) and Alberta, Canada (1990)
- Member of American Institute of Chemical Engineering since 1997, STS Chair 2013
- Member of American Chemical Society and South West Catalysis Society since 2005

Over 30 years of petrochemical knowledge including new process development and catalyst design and manufacture

- 11 years operations support and process design with Petrosar
- 8 years Process Development Manager Hydrogenation Technology at Chemical Research and Licensing (CDTECH) in Houston, TX.
- 6 years, Regional Sales Manager, Americas for catalysts including technical support globally for olefins purification catalysts
- Co-founder Custom Catalytic Solutions, responsible for marketing, sales, technical service, and finance.
- 5 years, Senior Principal Process Engineer, Johnson Matthey, Process Technologies with responsibilities for technical service, technical mentoring and marketing new hydrogenation catalysts.

The Eight Steps

© G. Gildert 2006 - 2014

1. Performance Specification

JM Johnson Matthey Process Technologies

- Feed rate + margin
 - Maximum rate for sizing
 - Normal rate for life
- Stream properties
 - Hydraulics
 - Detailed composition, or
 - Actual density, viscosity (gas and liquid if 2-phase), surface tension
- Key concentrations for bed sizing feed and product.
 - Limiting reactant
 - Basis for specification

- Hydrogen source
 - > Purity
 - Pressure
- Poisons
 > assumptions vs. history
- Alternate cases
 - One case governs sizing
 - Others do not affect result
- Units of measurement

Application Questionnaire

		Appli	cation Info	rmation			
		Acetyler	e Converte	r, Tail-end	ł		
Company:)oto:		
Location:				E	By:		
					,		
Process Inform	nation						
De-ethanizer Overheads		Normal	Maximum	F	Feed Contaminants		
Feed rate	kg/hr			F	I2S	ppm m	
Composition				C	COS	ppm m	
Methane	mol %			A	rsine	ppb w	
Acetylene	mol %			v	vater	ppm m	
Ethylene	mol %						
Ethane	mol %						
Propylene +	mol %						
Hydrogen Comp	osition						
Hydrogen	mol %						
Methane	mol %						
Carbon Monoxide	mol %						
Ethane +	mol %						
Product Specification		Maximum	Typical				
Hydrogen	ppm m						

2. Process Configuration

- Batch Reactor
- Continuous Stirred Tank Reactor
- Plug Flow Reactor
 - Adiabatic
 - Isothermal
- Fluidized Bed

Configuration - Batch

- Discovery of most reaction chemistry (Chemists)
- Reusable powdered catalyst
- Easily reproduced
- Easy translation to (small) commercial scale

JM Johnson Matthey Process Technologies

Batch Reactor

- Does not scale easily to large volumes
- Batch time = Fill time + reaction time + discharge time
- Catalyst active during product discharge
- Product heel

14

Configuration - CSTR

JM 🐼 Johnson Matthey Process Technologies

- Continuous flow
 - no fill time
 - no discharge time
 - no product heel
- Isothermal
- Low concentration
 - Iow fouling
 - Low reaction rate if higher order
- Higher contact time than batch?

TRACERCO Diagnostics[™]

Residence Time of Stirred Tank Reactor

Providing Insight Onsite

Configuration - PFR

- Most Common Configuration
- Vapor Phase, Liquid Phase, Trickle Bed
- Many variations

Two Reactor Designs

Providing Insight Onsite

Two More Reactor Designs

Single Bed Reactor with Spare

2 X 2 (Two in series with two spares)

2 + 1 (a.k.a. Merry-Go-Round, two in series with one spare)

JM Johnson Matthey Process Technologies

Lead-Lag with one spare

Recycle Reactor

JM Johnson Matthey Process Technologies

3. Catalyst Selection

- 1. Active metal
 - i.e. hydrogenations: Pd, Pt, Ni, Cu, Co, Fe
- 2. Promoter
 - Depends on the required effect: Ag, Au, Mo, W, Pb, Sn
- 3. Carrier (Support)
 - Alumina, Silica, Zeolite, Carbon
- 4. Shape
 - sphere, extrusion, tablet
- 5. Size
 - 1 mm to 6 mm
- Standardized product by application

Catalyst Development

- In-house state of the art testing facilities
- Gas and liquid phase testing capabilities specifically designed for different olefin streams
- Test work uses synthetic feed blends to mimic industrial compositions

- Dedicated development team researching full and selective hydrogenation catalysts for various markets
- Proving on catalyst offerings under customer feed blends and process conditions

Catalysts for specific services

JM Johnson Matthey Process Technologies

http://www.jmprotech.com/literature-downloads

Pyrolysis Gasoline

Market leading products to : -

- Improve induction period and colour
- Reduce gum content of gasoline blending components
- Reduce fouling in the downstream hydrodesulphurisation unit

Nickel catalysts

- sulphur and heavy metal tolerance
- preservation of aromatics

Palladium catalysts

- simple activation
- high olefin selectivity

Pyrolysis gasoline catalysts								
	HTC NI	HTC NI 400	PRICAT PD	PRICAT PD				
Active metal	Ni	Ni	Pd	Pd				
Promoted	no	NO	no	NO				
Size (mm)	2.5	2.5	2.5	2 - 4				
Shape	trilobe extrudate	trilobe extrudate	trilobe extrudate	sphere				
Support	alumina	alumina	alumina	alumina				

Available in four different types to suit different activation situations

Types of HTC NI catalyst								
	OX	OXS	RP	RPS				
Reduction temperature	high	moderate	low	lowest				
Sulphur addition	standard	none	standard	none				

The Eight Steps

© G. Gildert 2006 - 2014

4. Material Balance

- Ch.E. 101
- Moles!
- Conversion for spec component
- Account for every reaction
- Amount of "reactant" (hydrogen, oxygen, fuel)
 - ➢ i.e. H2:Ac, scfh per bbl
 - Excess reactant
 - ≻ % conversion
- Equilibrium limits
- Recycle composition
- Vent

- Spreadsheet
- Process simulation

5. Heat Balance

- Required temperature
 - Minimum inlet
 - > WABT
 - > EIT
- Heat of Reaction
 Heat of formation
 Heat of combustion
- Pressure Effects
 - Dew point
 - Bubble point
 - > V / L split

Process Technologies

JM 🛠

Johnson Matthey

- VLE Data
- Spreadsheet?
- Process simulation

Heat and Material Balance Issues

- Poor performance if temperature rise is greater than 75°F (42°C) per bed
 - Activity & selectivity issues
 - Increase recycle
 - Add another bed in series
- Must be at least 15°C (25°F) above the dew point to prevent condensation on catalyst
 - Feed superheat
 - Intercooler operation
- Hydrogen solubility issues
 - Choose thermo package carefully
 - 2-phase feed more complicated than single phase
- Vaporization due to heat of reaction
 - Channeling
 - Hot spots

The Eight Steps

© G. Gildert 2006 - 2014

6. Catalyst Volume - Practice

- Required contact time (τ) determined by laboratory performance testing and experience
- Kinetic theory can provide interpolation for alternate conditions.
- Rates are normally transformed for nominal conditions
 - > SI = 1 atm, $0^{\circ}C = Nm^{3}/hr$ per m³ of catalyst
 - > USCU = 14.7 psia, 60° F = scfh per ft³ of catalyst (6% higher for gas!)

$$GHSV = gas hourly space velocity = \frac{Volumetic Feed rate}{Catalyst Volume} \propto \frac{1}{\tau}$$

LHSV = liquid hourly space velocity =
$$\frac{Volumetric Feed Rate}{Catalyst Volume} \propto \frac{1}{\tau}$$
 hr

WHSV = weight hourly space velocity =
$$\frac{Mass Feed Rate}{Catalyst Mass} \propto \frac{1}{\tau}$$

7. Reactor Diameter

- $L/D = \frac{1}{2}$ to 5
 - Radial distribution of short beds
 - Wall effects on tall beds

• Bed Height Limits

- Maximum based on catalyst crush strength, loading, channeling
- Minimum based on history, conversion
- Superficial Velocity
 - Maximize for mass transfer
 - Limited by channeling for 2-phase systems
 - Turbulence via Re
 - Mass Transfer via Sh
- Pressure Drop / Flow Regime
 - Process design to minimize
 - High cost & system limits
 - 2-phase flow regime for improved mass transfer = reaction rate

8. Catalyst Cycle and Life

• Cycle Length

Experience

- > Temperature
- Heavies in feed
- Life
 - Number of regenerations

Accumulation of poisons

• Average feed rate * average concentration vs. capacity

The Eight Steps

JM Johnson Matthey Process Technologies

Thank You.

Questions?

Gary Gildert Johnson Matthey Houston, TX 281-291-0709 Gary.Gildert@matthey.com