The Eight Steps to Specify a Catalyst Bed

Gary Gildert for the East Tennessee Local Section of the AIChE

November 4, 2014
Johnson Matthey

Overview

• A speciality chemicals company and a world leader in sustainable technologies

• Origins date back to 1817, floated 1942, FTSE 100 company since June 2002

• £11.2 billion revenue and underlying profit before tax* of £427.3 million for year ended 31st March 2014

• Operations in over 30 countries with around 12,000 employees

• Leading global market positions in all its major businesses

* Before amortisation of acquired intangibles, major impairment and restructuring charges and profit or loss on disposal of businesses and, where relevant, related tax effects.
Our Strategy

Technology leadership forms the basis of Johnson Matthey’s strategy to deliver superior long term growth.
Divisional Structure

Emission Control Technologies
- Light Duty Catalysts
- Heavy Duty Catalysts
- Stationary Emissions Control

Chemicals
- JM Davy Technologies
- Syngas
- **Chemical Catalysts (inc. Formox)**

Oil and Gas
- Refineries
- Purification
- Tracerco

Process Technologies

Precious Metal Products
- Services
 - Platinum Marketing and Distribution
 - Refining
- Manufacturing
 - Noble Metals
 - Colour Technologies
 - Chemical Products

Fine Chemicals
- Active Pharmaceutical Ingredient (API) Manufacturing
- Catalysis and Chiral Technologies
- Research Chemicals

New Businesses
- New Business Development
- Water
- Battery Technologies
- Fuel Cells
Process Technologies

Chemicals

- Formox
- Chemical Catalysts
- Katalco
- Davy
- Protelec
- Tracerco

Oil & Gas

- Katalco
- Puraspec
- INTERCAT
- Hytreat
- Puracare
- Tracerco

A global supplier of catalysts, licensing technologies and other services to the petrochemical, syngas, oil refining and gas processing industries.
Chemical Catalysts

Overview, Markets and Segments

- Fixed bed supported catalysts in base metals (e.g. Ni, Cu, Co, Zn) from Oberhausen, Emmerich (Germany) and Clitheroe (UK)
- Ni catalysts for edible oils & oleochemicals from Emmerich (Germany) and Taloja (India)
- Sponge Metal™ catalysts from Tennessee (USA)
- Supported precious metal catalysts from Royston (UK) and West Deptford (USA)

Markets and Segments

<table>
<thead>
<tr>
<th>Petrochemicals</th>
<th>Oleochemicals</th>
<th>Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olefins</td>
<td>Fatty Acids</td>
<td>FORMOX™ Fe/Mo catalysts</td>
</tr>
<tr>
<td>Alcohols</td>
<td>Edible Oils</td>
<td>FORMOX™ Plant Technology</td>
</tr>
<tr>
<td>Solvents and Fuels</td>
<td>Polyols</td>
<td></td>
</tr>
<tr>
<td>Fluorochemicals</td>
<td>Natural Detergent Alcohols</td>
<td></td>
</tr>
<tr>
<td>Chemical Intermediates</td>
<td>Biorenewables</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Custom Catalysts
Gary Gildert

Internationally recognized expert in hydro treating with 24 patents and over 40 publications

- Bachelor of Applied Science (Ch.E.), University of Waterloo 1981
- Masters of Business Administration, Rice University in 2005
- Registered professional engineer in Ontario, Canada (1986) and Alberta, Canada (1990)
- Member of American Institute of Chemical Engineering since 1997, STS Chair 2013
- Member of American Chemical Society and South West Catalysis Society since 2005

Over 30 years of petrochemical knowledge including new process development and catalyst design and manufacture

- 11 years operations support and process design with Petrosar
- 8 years Process Development Manager Hydrogenation Technology at Chemical Research and Licensing (CDTECH) in Houston, TX.
- 6 years, Regional Sales Manager, Americas for catalysts including technical support globally for olefins purification catalysts
- Co-founder Custom Catalytic Solutions, responsible for marketing, sales, technical service, and finance.
- 5 years, Senior Principal Process Engineer, Johnson Matthey, Process Technologies with responsibilities for technical service, technical mentoring and marketing new hydrogenation catalysts.
The Eight Steps

- Performance Specification
- Process Configuration
- Catalyst Selection
- Heat Balance
- Mass Balance
- Catalyst Volume
- Reactor Diameter
- Cycle Length Life

© G. Gildert 2006 - 2014
1. Performance Specification

- **Feed rate + margin**
 - Maximum rate for sizing
 - Normal rate for life

- **Stream properties**
 - Hydraulics
 - Detailed composition, or
 - Actual density, viscosity (gas and liquid if 2-phase), surface tension

- **Key concentrations for bed sizing – feed and product.**
 - Limiting reactant
 - Basis for specification

- **Hydrogen source**
 - Purity
 - Pressure

- **Poisons**
 - Assumptions vs. history

- **Alternate cases**
 - One case governs sizing
 - Others do not affect result

- **Units of measurement**
Application Information

Acetylene Converter, Tail-end

<table>
<thead>
<tr>
<th>Company:</th>
<th>Date:</th>
<th>Location:</th>
<th>By:</th>
</tr>
</thead>
</table>

Process Information

De-ethanizer Overheads

<table>
<thead>
<tr>
<th>Feed rate</th>
<th>kg/hr</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
</table>

Feed Contaminants

<table>
<thead>
<tr>
<th>H2S</th>
<th>ppm m</th>
</tr>
</thead>
<tbody>
<tr>
<td>COS</td>
<td>ppm m</td>
</tr>
</tbody>
</table>

Composition

<table>
<thead>
<tr>
<th>Methane</th>
<th>mol %</th>
<th>Arsine</th>
<th>ppb w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>mol %</td>
<td>water</td>
<td>ppm m</td>
</tr>
<tr>
<td>Ethylene</td>
<td>mol %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>mol %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylene +</td>
<td>mol %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrogen Composition

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>mol %</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>mol %</td>
</tr>
<tr>
<td>Ethane +</td>
<td>mol %</td>
</tr>
</tbody>
</table>

Product Specification

<table>
<thead>
<tr>
<th>Acetylene</th>
<th>ppm m</th>
<th>Maximum</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>ppm m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Process Configuration

- Batch Reactor
- Continuous Stirred Tank Reactor
- Plug Flow Reactor
 - Adiabatic
 - Isothermal
- Fluidized Bed
Configuration - Batch

- Discovery of most reaction chemistry (Chemists)
- Reusable powdered catalyst
- Easily reproduced
- Easy translation to (small) commercial scale
Batch Reactor

- Does not scale easily to large volumes
- Batch time = Fill time + reaction time + discharge time
- Catalyst active during product discharge
- Product heel

We had a small problem with the scale-up out of the laboratory....
Configuration - CSTR

- Continuous flow
 - no fill time
 - no discharge time
 - no product heel

- Isothermal

- Low concentration
 - low fouling
 - Low reaction rate if higher order

- Higher contact time than batch?
TRACERCO Diagnostics™
Residence Time of Stirred Tank Reactor

STE value = 1.25
Configuration - PFR

- Most Common Configuration
- Vapor Phase, Liquid Phase, Trickle Bed
- Many variations
Two Reactor Designs

Axial Flow
(most common)

Radial Flow
Two More Reactor Designs

Up-flow

Isothermal

Product

Feed

Catalyst Beds

Feed

Product

TruTec™ Scanning Services
Single Bed Reactor with Spare
2 X 2 (Two in series with two spares)
$2 + 1$ (a.k.a. Merry-Go-Round, two in series with one spare)
Lead-Lag with one spare
3. Catalyst Selection

1. Active metal
 - i.e. hydrogenations: Pd, Pt, Ni, Cu, Co, Fe

2. Promoter
 - Depends on the required effect: Ag, Au, Mo, W, Pb, Sn

3. Carrier (Support)
 - Alumina, Silica, Zeolite, Carbon

4. Shape
 - sphere, extrusion, tablet

5. Size
 - 1 mm to 6 mm

- Standardized product by application
Catalyst Development

- In-house state of the art testing facilities
- Gas and liquid phase testing capabilities specifically designed for different olefin streams
- Test work uses synthetic feed blends to mimic industrial compositions

- Dedicated development team researching full and selective hydrogenation catalysts for various markets
- Proving on catalyst offerings under customer feed blends and process conditions
Catalysts for specific services

http://www.jmprotech.com/literature-downloads
Pyrolysis Gasoline

Market leading products to:
- Improve induction period and colour
- Reduce gum content of gasoline blending components
- Reduce fouling in the downstream hydrodesulphurisation unit

Nickel catalysts
- sulphur and heavy metal tolerance
- preservation of aromatics

Palladium catalysts
- simple activation
- high olefin selectivity

<table>
<thead>
<tr>
<th>Pyrolysis gasoline catalysts</th>
<th>HTC NI 200</th>
<th>HTC NI 400</th>
<th>PRICAT PD 309/6</th>
<th>PRICAT PD 469</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active metal</td>
<td>Ni</td>
<td>Ni</td>
<td>Pd</td>
<td>Pd</td>
</tr>
<tr>
<td>Promoted</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2 – 4</td>
</tr>
<tr>
<td>Shape</td>
<td>trilobe extrudate</td>
<td>trilobe extrudate</td>
<td>trilobe extrudate</td>
<td>sphere</td>
</tr>
<tr>
<td>Support</td>
<td>alumina</td>
<td>alumina</td>
<td>alumina</td>
<td>alumina</td>
</tr>
</tbody>
</table>

Available in four different types to suit different activation situations

<table>
<thead>
<tr>
<th>Types of HTC NI catalyst</th>
<th>OX</th>
<th>OXS</th>
<th>RP</th>
<th>RPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction temperature</td>
<td>high</td>
<td>moderate</td>
<td>low</td>
<td>lowest</td>
</tr>
<tr>
<td>Sulphur addition</td>
<td>standard</td>
<td>none</td>
<td>standard</td>
<td>none</td>
</tr>
</tbody>
</table>
The Eight Steps

Performance Specification → Process Configuration → Catalyst Selection

Heat Balance → Mass Balance

Catalyst Volume → Reactor Diameter → Cycle Length Life

© G. Gildert 2006 - 2014
4. Material Balance

- Ch.E. 101
- Moles!
- Conversion for spec component
- Account for every reaction
- Amount of “reactant” (hydrogen, oxygen, fuel)
 - i.e. H2:Ac, scfh per bbl
 - Excess reactant
 - % conversion
- Equilibrium limits
- Recycle composition
- Vent

- Spreadsheet
- Process simulation
5. Heat Balance

• Required temperature
 - Minimum inlet
 - WABT
 - EIT

• Heat of Reaction
 - Heat of formation
 - Heat of combustion

• Pressure Effects
 - Dew point
 - Bubble point
 - V / L split

• VLE Data
• Spreadsheet?
• Process simulation
Heat and Material Balance Issues

• Poor performance if temperature rise is greater than 75°F (42°C) per bed
 ➢ Activity & selectivity issues
 ➢ Increase recycle
 ➢ Add another bed in series

• Must be at least 15°C (25°F) above the dew point to prevent condensation on catalyst
 ➢ Feed superheat
 ➢ Intercooler operation

• Hydrogen solubility issues
 ➢ Choose thermo package carefully
 ➢ 2-phase feed more complicated than single phase

• Vaporization due to heat of reaction
 ➢ Channeling
 ➢ Hot spots
The Eight Steps

Performance Specification → Process Configuration → Catalyst Selection

Heat Balance → Mass Balance

Catalyst Volume → Reactor Diameter → Cycle Length Life

© G. Gildert 2006 - 2014
6. Catalyst Volume - Practice

- Required contact time \((\tau)\) determined by laboratory performance testing and experience.
- Kinetic theory can provide interpolation for alternate conditions.
- Rates are normally transformed for nominal conditions:
 - SI = 1 atm, 0°C = Nm³/hr per m³ of catalyst
 - USCU = 14.7 psia, 60°F = scfh per ft³ of catalyst (6% higher for gas!)

\[
GHSV = \text{gas hourly space velocity} = \frac{\text{Volumetric Feed rate}}{\text{Catalyst Volume}} \propto \frac{1}{\tau} \quad \text{hr}^{-1}
\]

\[
LHSV = \text{liquid hourly space velocity} = \frac{\text{Volumetric Feed Rate}}{\text{Catalyst Volume}} \propto \frac{1}{\tau}
\]

\[
WHSV = \text{weight hourly space velocity} = \frac{\text{Mass Feed Rate}}{\text{Catalyst Mass}} \propto \frac{1}{\tau}
\]
7. Reactor Diameter

- **L/D = ½ to 5**
 - Radial distribution of short beds
 - Wall effects on tall beds

- **Bed Height Limits**
 - Maximum based on catalyst crush strength, loading, channeling
 - Minimum based on history, conversion

- **Superficial Velocity**
 - Maximize for mass transfer
 - Limited by channeling for 2-phase systems
 - Turbulence via Re
 - Mass Transfer via Sh

- **Pressure Drop / Flow Regime**
 - Process design to minimize
 - High cost & system limits
 - 2-phase flow regime for improved mass transfer = reaction rate
8. Catalyst Cycle and Life

• Cycle Length
 ➢ Experience
 ➢ Temperature
 ➢ Heavies in feed

• Life
 ➢ Number of regenerations
 ➢ Accumulation of poisons
 o Average feed rate * average concentration vs. capacity
The Eight Steps

- Performance Specification
- Process Configuration
- Catalyst Selection
- Heat Balance
- Mass Balance
- Catalyst Volume
- Reactor Diameter
- Cycle Length Life

Call the catalyst vendor
Thank You.

Questions?

Gary Gildert
Johnson Matthey
Houston, TX
281-291-0709
Gary.Gildert@matthey.com