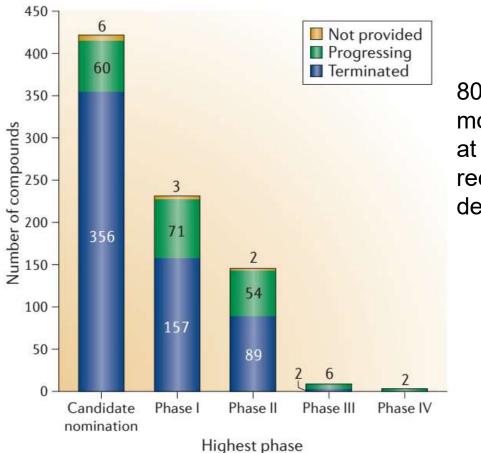


Snapshot of Attrition During Drug Development

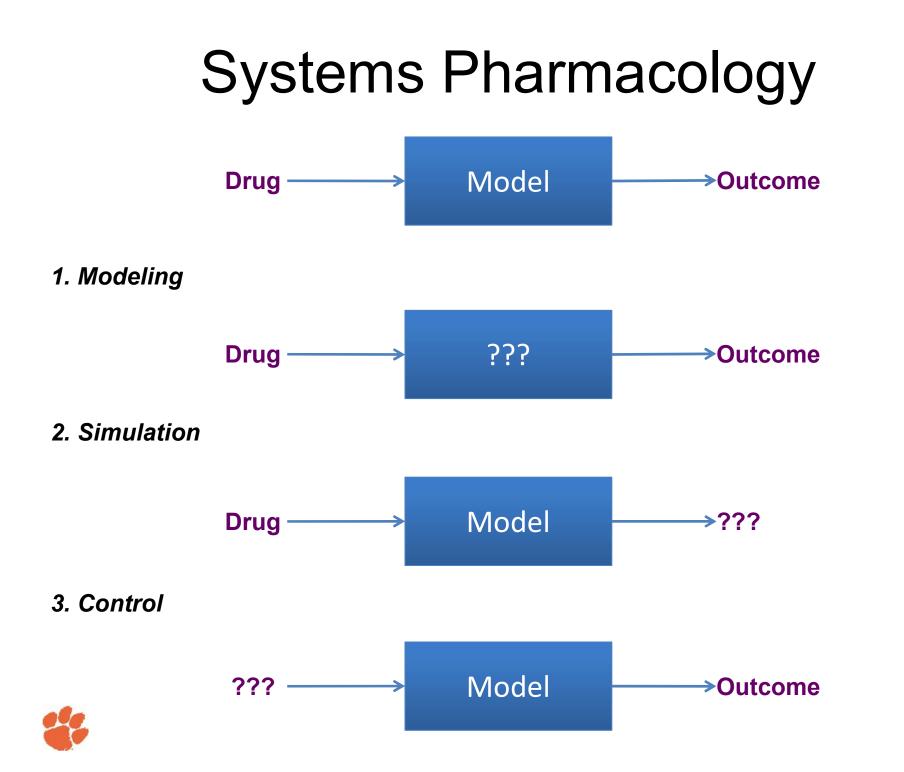


808 oral smallmolecule compounds at their highest recorded phase of development

Waring et al., Nat Rev Drug Discovery, 2015

Simulation is Typically an Integral Component of Design

- Example of airplane building
 - Build many airplanes, see which ones don't crash?
 - No!
 - Sufficient understanding of fluid dynamics and physics allows simulation to screen design ideas
- Human biology is far more complex and less
 understood—even in how to simulate it
 - Need more basic research
 - Physiological and pathophysiological mechanisms
 - Modeling and simulation methods to capture said mechanisms



PRECISION MEDICINE OUTLOOK

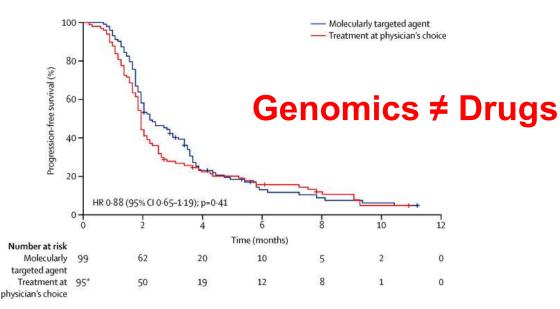
PERSPECTIVE

The precision-oncology illusion

Precision oncology has not been shown to work, and perhaps it never will, says **Vinay Prasad**.

Precision oncology promises to pair individuals with cancer with drugs that target the specific mutations in their tumour, in the hope of producing long-lasting remission and extending their

> Targeted Therapy was found not to outperform Physician's Choice

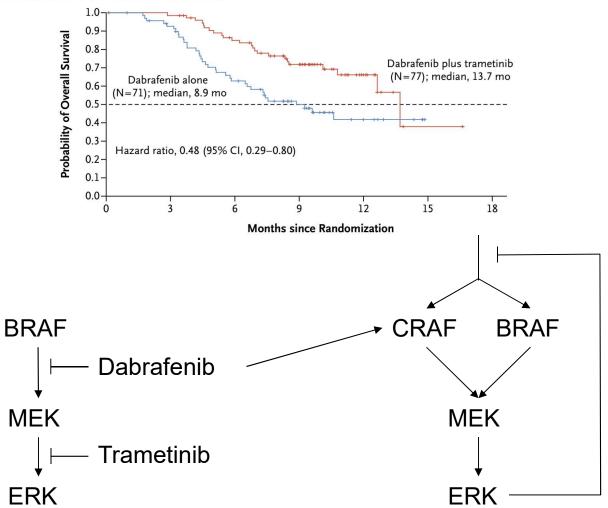


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma

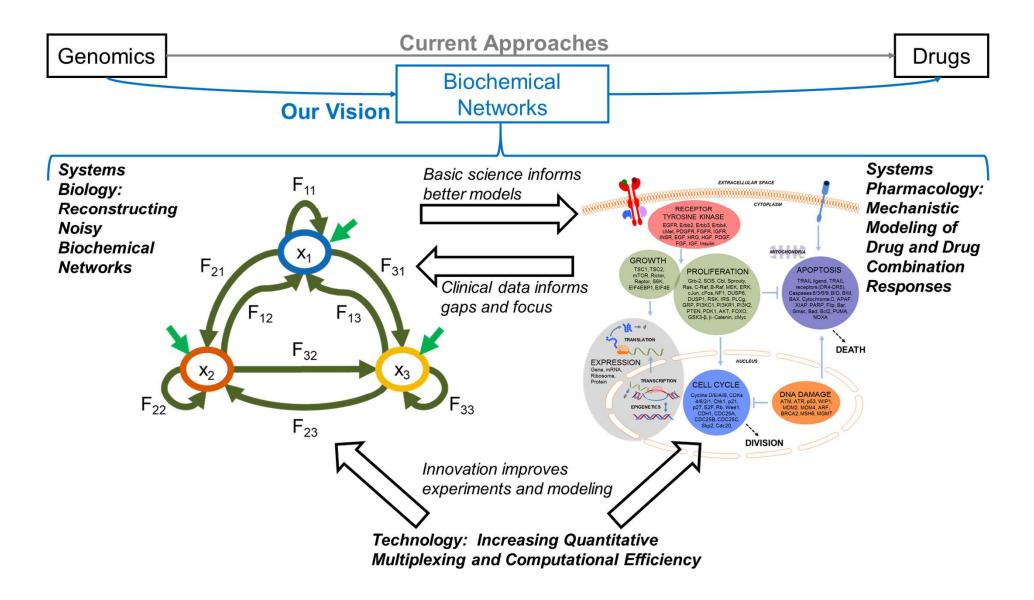
Overall Survival, Patients with Elevated LDH at Baseline



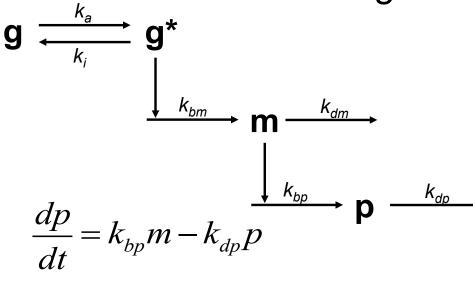
What More Does Cancer Precision Medicine Need to Consider?

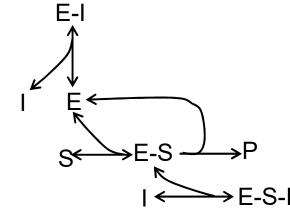
One Driver→One Target→One Drug

- 1. Systems
 - Driver may not be a good direct drug target
 - Drivers interact; 4-7 drivers per tumor (maybe more)
- 2. Polypharmacology
 - Multiple drivers→multiple targets→multiple drugs
 - Most targeted drugs are promiscuous
- 3. Dynamics
 - Tumors adapt and evolve on multiple time scales
- 4. Heterogeneity
 - Clonal cells show transient resistance
 - Cancers comprise multiple subclones with different drivers and microenvironments



Quantitative Systems Pharmacology: Mechanistic Kinetic Modeling of Biochemical Networks





Stochastic Gene Expression

$$\frac{dm}{dt} = k_{bm}g * -k_{dm}m$$

$$\frac{dg^*}{dt} = k_a g - k_i g^*$$

$$\frac{dg}{dt} = k_i g * -k_a g$$

180 20 160 14 Active Genes mRNAs Proteins 0.8 0.6 80 0.4 60 0.2 40L 20 44 Time (hr) 20 40 Time (hr) 60 60 40 60 40 40 Time (hr)

Outline

- Mechanistic Models of Cancer Cell Signaling
 - Formulation, Building, and Training
 - Stochastic Cell Cycle Entry
 - Stochastic Cell Death
- Towards Training with Big Pharmacological Data
- Reconstructing Cell Signaling Networks from Perturbation Time Course Data

Check for updates RESEARCH ARTICLE

A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens

Mehdi Bouhaddou¹, Anne Marie Barrette¹, Alan D. Stern¹, Rick J. Koch¹, Matthew S. DiStefano¹, Eric A. Riesel¹, Luis C. Santos¹, Annie L. Tan¹, Alex E. Mertz¹, Marc R. Birtwistle^{1,2}*

1 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America, 2 Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States of America

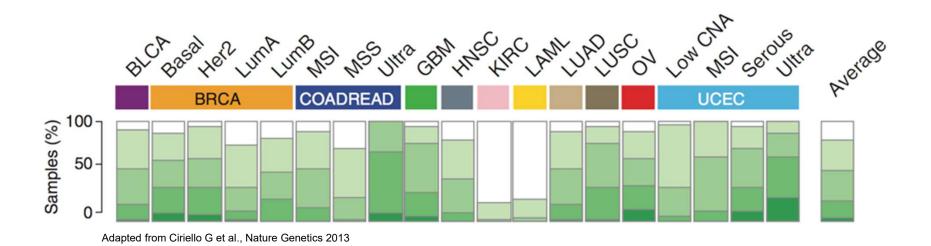
* mbirtwi@clemson.edu

Defining Model Scope

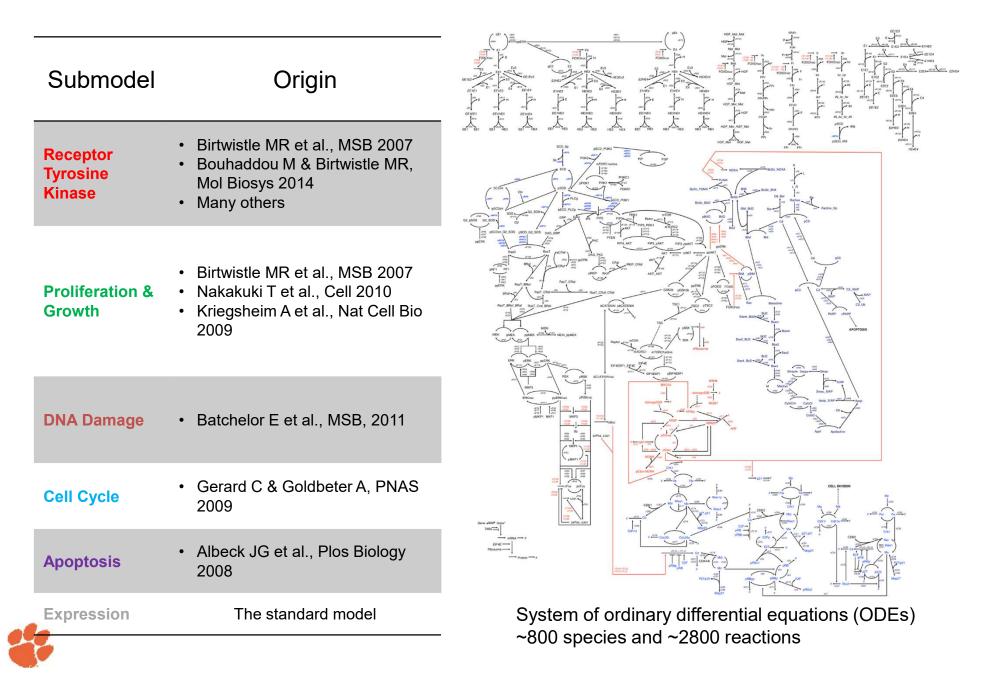
Pathways:

- RTK-RAS-RAF-MAPK
- PI3K-AKT-mTOR
- Cell Cycle
- p53-DNA Damage

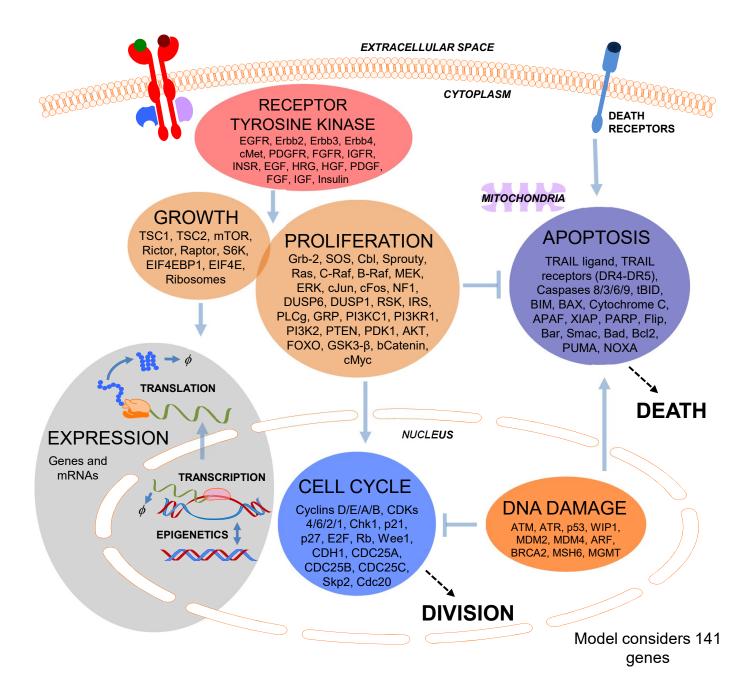
Number of pathways altered



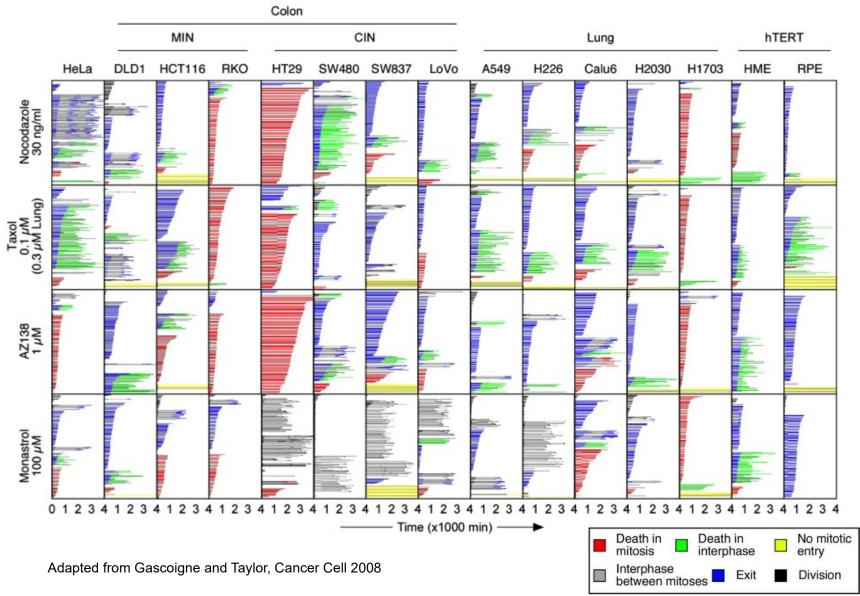
Model is Composed of Pathway-Specific Models from the Literature



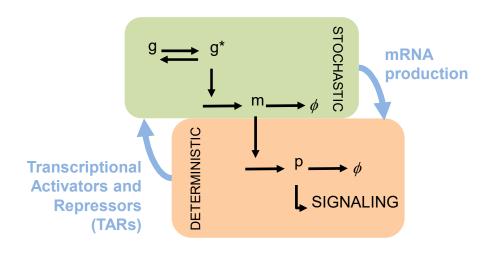
A Prettier Picture

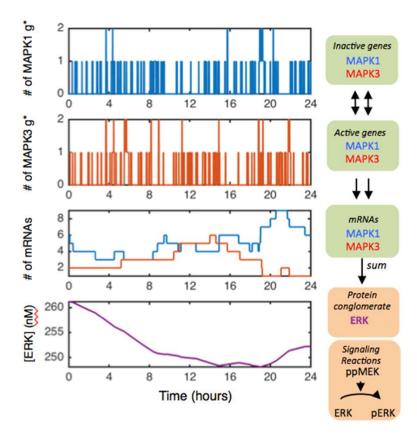


Single Cells Have Stochastic Response to Drugs

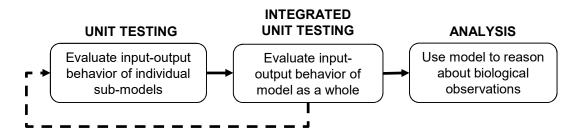


Cell-to-cell variability: Simulating Stochastic Gene Expression





Increasing Confidence in Models



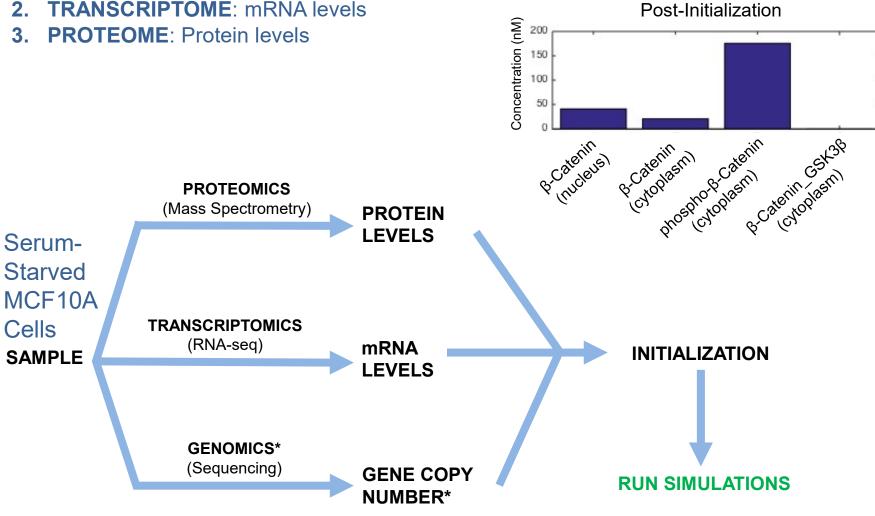
Cell context: Start with non-transformed MCF10A

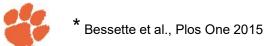
- Predictable phenotypic behaviors
- Few alterations
- Extensive literature data and widely studied

Unit Testing—Expression: Tailoring Model to Quantitative **Expression Context**

Define "expression context":

- **GENOME**: Gene copy number 1.
- 2. TRANSCRIPTOME: mRNA levels
- 3.



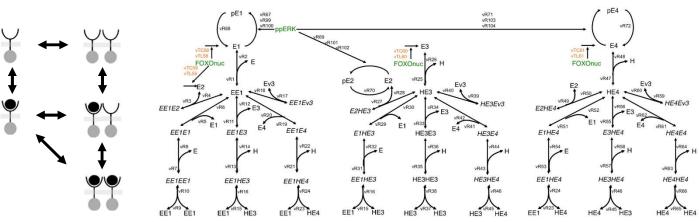


Unit Testing – Receptor Tyrosine Kinase (RTK)

ErbB3

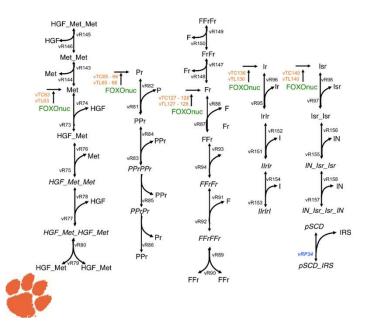
EGFR

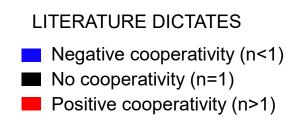
ErbB4

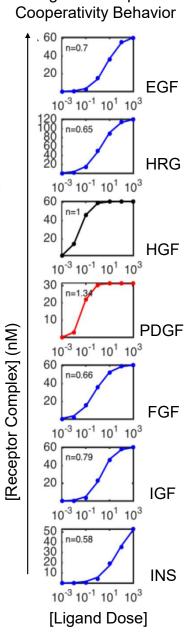


ErbB2

cMET PDGFR FGFR IGFR INSR

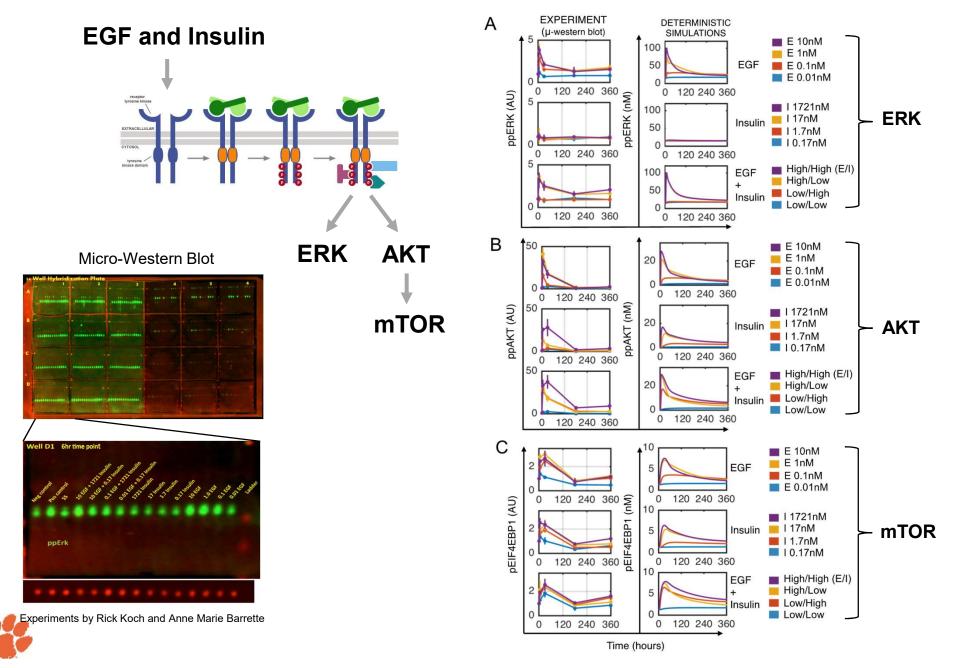






Ligand-Receptor

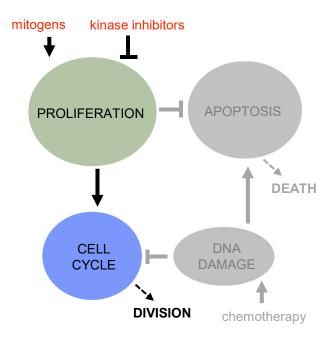
Unit Testing – Proliferation & Growth



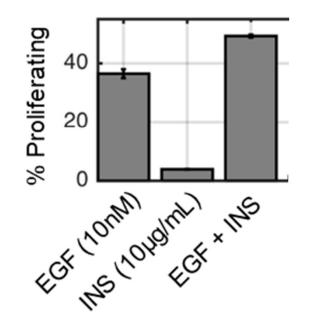
Unit Testing

Submodel	Required Properties for Each Submodel
Receptor Tyrosine Kinase	 Ligand-receptor cooperativity matches experimental observations. Receptor trafficking kinetics reflects experimental observations.
Proliferation & Growth	 Receptor pathway preferences match experimental observations. Basal activity fluxes through ERK and AKT pathways exist, tailored to the serum-starved state. Dynamic dose responses of ERK, AKT, and mTOR signaling matches experimental western blot data.
Cell Cycle	 Cell cycle entry is driven by induction of cyclin D mRNA. Order and timing of cyclin/cdk complexes matches established observations. Cell cycle duration matches that in MCF10A cells. Upregulation of p21 arrests the cell cycle.
Apoptosis	 Robustness against small death signals. Model exhibits all-or-nothing death response when apoptosis signaling surpasses threshold. Dose and dynamics of TRAIL-induced extrinsic apoptosis matches experimental observations. Intrinsic apoptosis signaling responds to interrupted survival signaling and DNA damage induced upregulation of pro-apoptotic proteins.
DNA Damage	 Convert original delayed differential equations into ordinary differential equations. p53 dynamics corresponding to single- and double-stranded DNA breaks matches experimental observations. Rate of DNA damage repair is dependent on levels of repair enzymes. p53 activation dynamics exhibit "digital" and not "analog" behavior, whereby the number of p53 pulses, but not pulse height or width, scales to magnitude of DNA damage. Etoposide-induced DNA damage is dependent on the cell cycle stage (S-phase).
Expression	 Model is tailored to genomic, transcriptomic, and proteomic context of MCF10A cells. Stochastic gene expression is simulated with a computationally efficient algorithm. Cell-to-cell variability in mRNA and protein levels matches experimental observations. EIF4E levels possess extrinsic control over the translation rate. Ribosomes double during the course of one cell cycle.

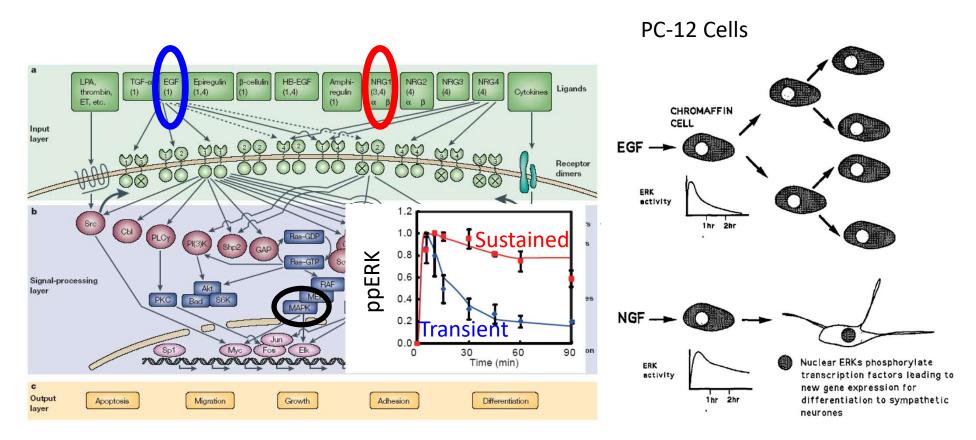
Integrated Unit Testing – Cell Cycle How are synergistic EGF and Insulin signals integrated by the cell?



EXPERIMENT (BrdU incorporation/ Flow cytometry)



Spatiotemporal Dynamics of Signaling?

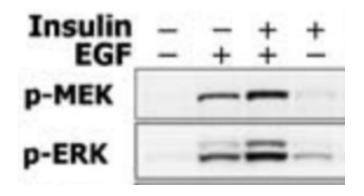


Adapted from Marshall, Cell, 1995

Molecular Systems Biology 5; Article number 256; doi:10.1038/msb.2009.19 Citation: Molecular Systems Biology 5:256 © 2009 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/09 www.molecularsystemsbiology.com

Systems-level interactions between insulin–EGF networks amplify mitogenic signaling

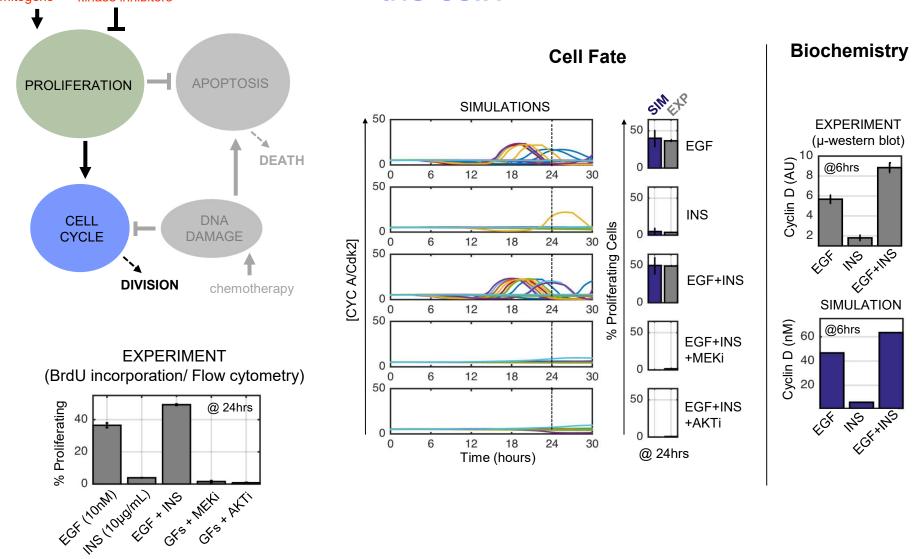
Nikolay Borisov^{1,6}, Edita Aksamitiene^{1,6}, Anatoly Kiyatkin^{1,6}, Stefan Legewie², Jan Berkhout¹, Thomas Maiwald^{1,3}, Nikolai P Kaimachnikov^{1,4}, Jens Timmer³, Jan B Hoek¹ and Boris N Kholodenko^{1,5,*}



HEK293 cells

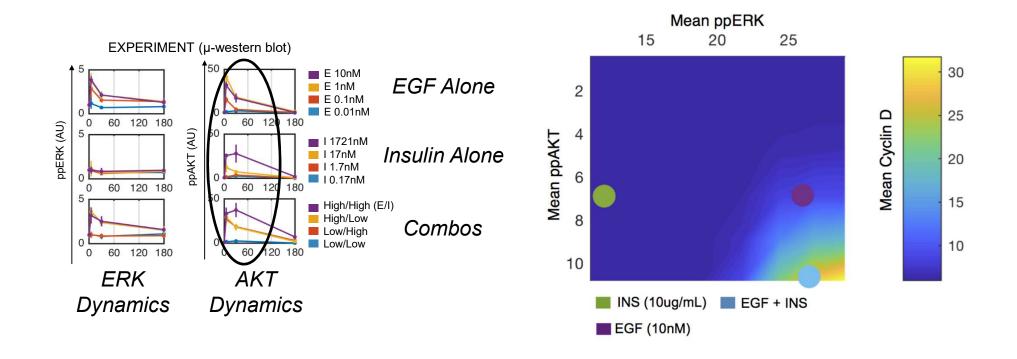
Short times (under 15 min)

Integrated Unit Testing – Cell Cycle How are synergistic EGF and Insulin signals integrated by the cell?

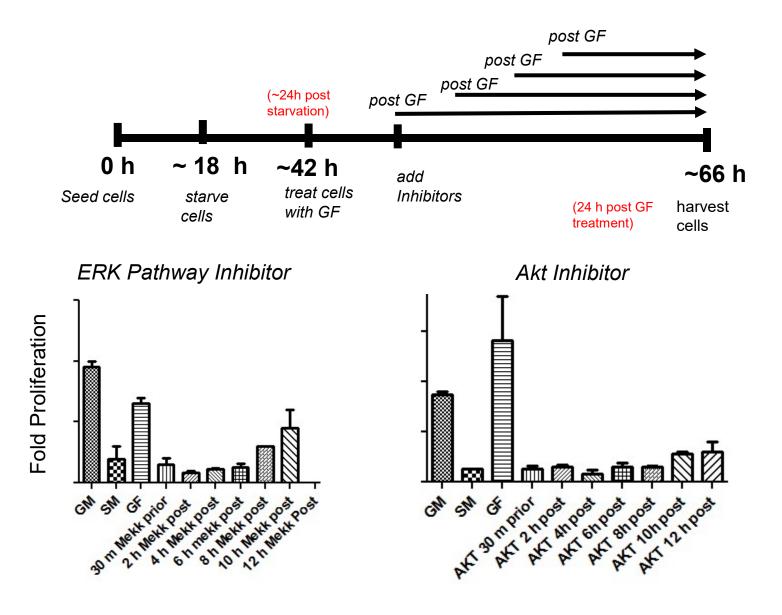


Se .

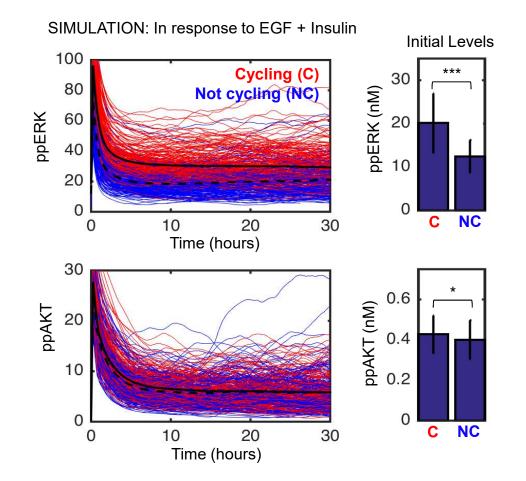
Analysis: Prolonged AKT Activation Explains EGF and Insulin S-Phase Synergy



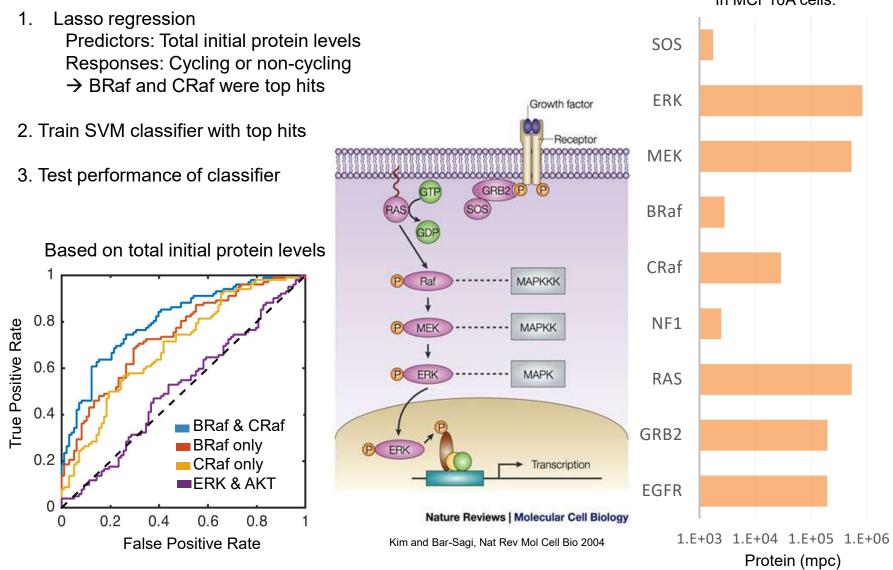
Inhibitor Time Course Experiments



Analysis – Cell Cycle: Phospho-ERK levels dictate stochastic cell cycle entry

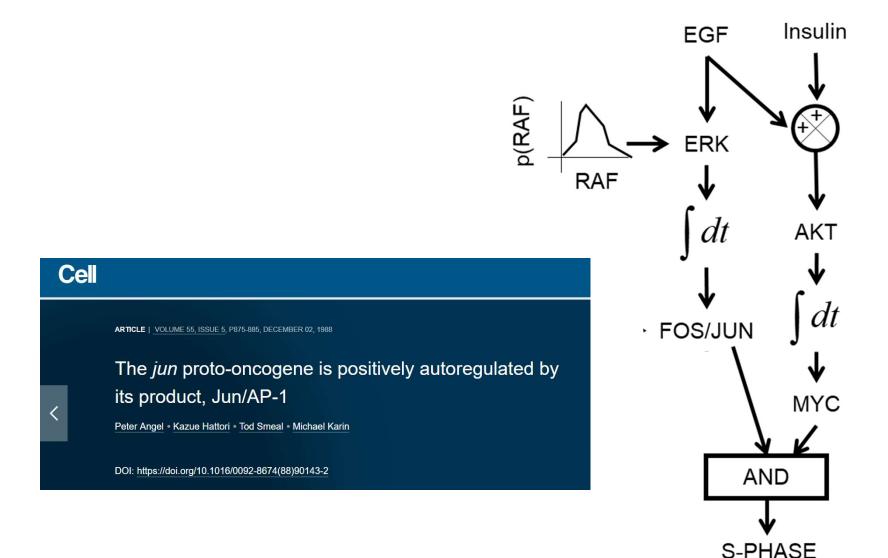


Analysis – Cell Cycle: Can Stochastic Cell Cycle Response Be Predicted?

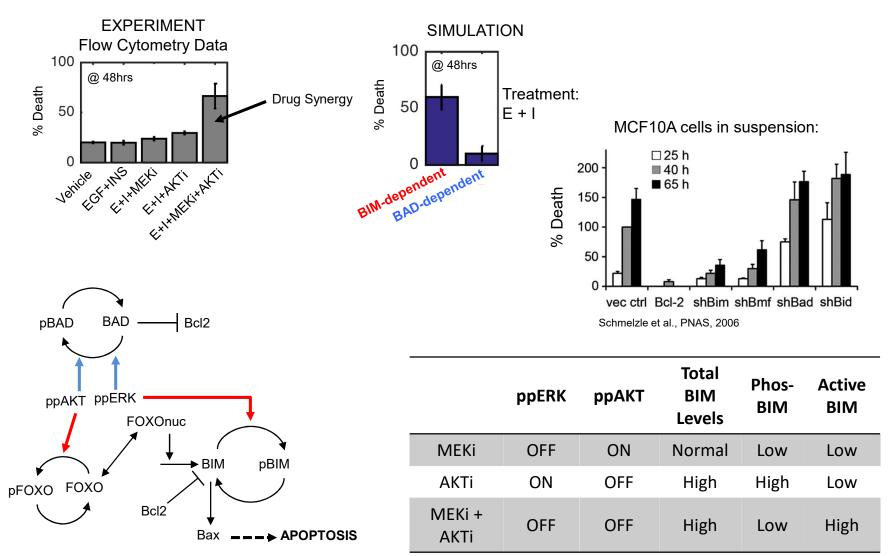


In MCF10A cells:

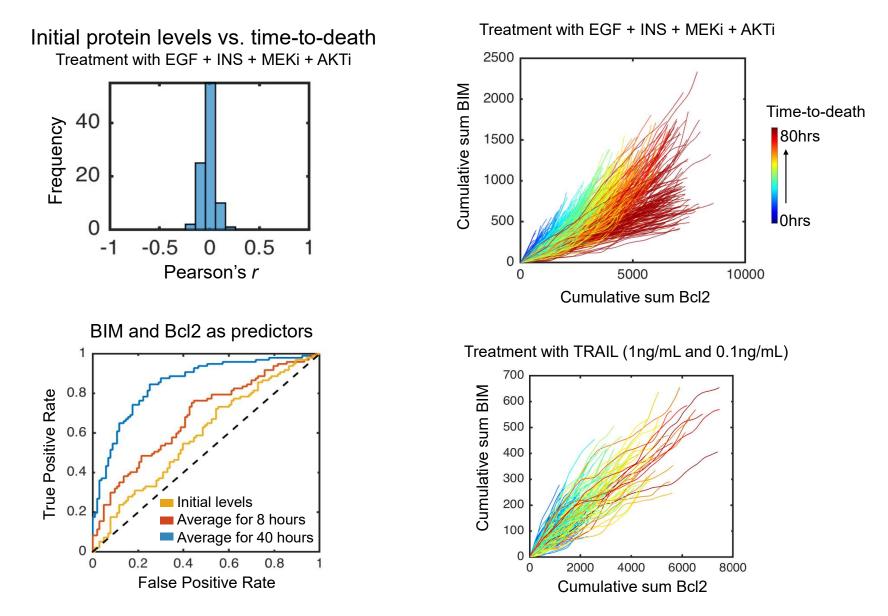
Emerging logic of integrative S-phase entry control



Analysis – Apoptosis: Mechanistic Insight into Drug Synergy

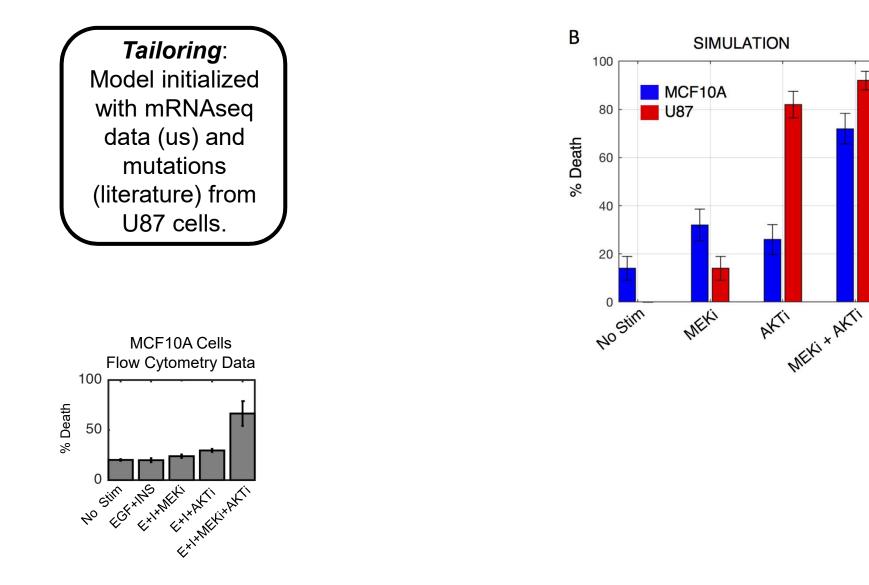


Balance between BIM and Bcl2 levels over time predict the induction of intrinsic apoptosis



Is the Model Predictive in Different Contexts?

Т

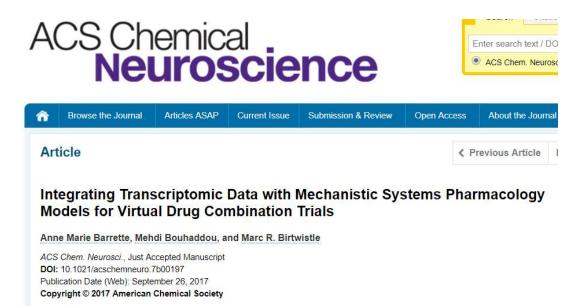


Outline

- Mechanistic Models of Cancer Cell Signaling
 - Formulation, Building, and Training
 - Stochastic Cell Cycle Entry
 - Stochastic Cell Death
- Towards Training with Big Pharmacological Data
- Reconstructing Cell Signaling Networks from Perturbation Time Course Data

Vision for Such Models

- Given a patient, what drug(s) to use?
 - Precision medicine
 - Dose and scheduling optimization
- Given a drug, what patient(s) will respond?
 - Inclusion in or exclusion from clinical trials
 - What drugs to combine



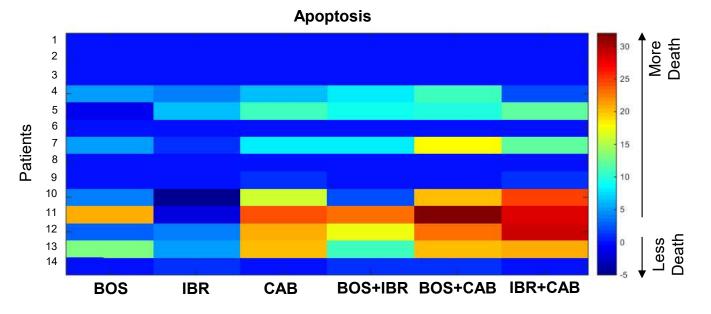
Tailoring the Model to 14 Glioblastoma (GBM) Patients from The Cancer Genome Atlas (TCGA)

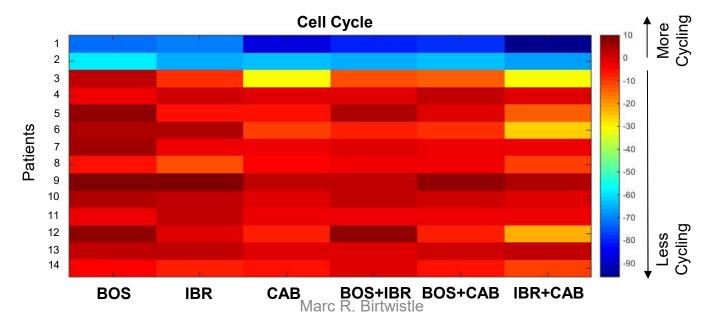
Three Promiscuous Kinase Inhibitors or Their Combinations for a Heterogeneous Tumor

Modeling Three Promiscuous, Brain-Penetrant Kinase Inhibitors

Drug	Gene Targets	Model Targets	k_on (1/s/nM)	k_off (1/s)
Bosutinib	MAP2K1/MAP2K2	MEK	1	288
	RPS6KA1/RPS6KA3	RSK	1	1115
	PRKCA/PRKCG	PKC	1	1567
	CHEK1	Chk1	1	1168
	FGFR1	Fr	1	2206
	IGF1R	lr	1	2285
	INSR	lsr	1	669
	PDGFRA	Pr	1	3081
lbrutinib	BRAF	Braf	1	1128
	EGFR	E1	1	18
	ERBB3	E3	1	1
	FGFR1/FGFR2	Fr	1	707
	GSK3B	GSK3b	1	2571
	IGF1R	lr	1	4882
	INSR	lsr	1	1326
	MTOR	mTOR	1	8091
	PDPK1	PDK1	1	2448
	PIK3CA/PIK3CB/PIK3CD/PIK3CG	PI3KC1	1	2039
	RAF1	Craf	1	2333
	RPS6KA1/RPS6KA3/RPS6KA2	RSK	1	6447
Cabozantinib	BRAF	Braf	1	2961
	EGFR	E1	1	864
	FGFR1/FGFR2	Fr	1	2153
	IGF1R	lr	1	8236
	INSR	lsr	1	1880
	MAP2K1	MEK	1	214
	MET	MET	1	1
	PDGFRA	Pr	1	1
	PIK3CA	PI3KC1	1	1084
	PIK3R1	PI3KR1	1	1084
	RAF1	Craf	1	1078

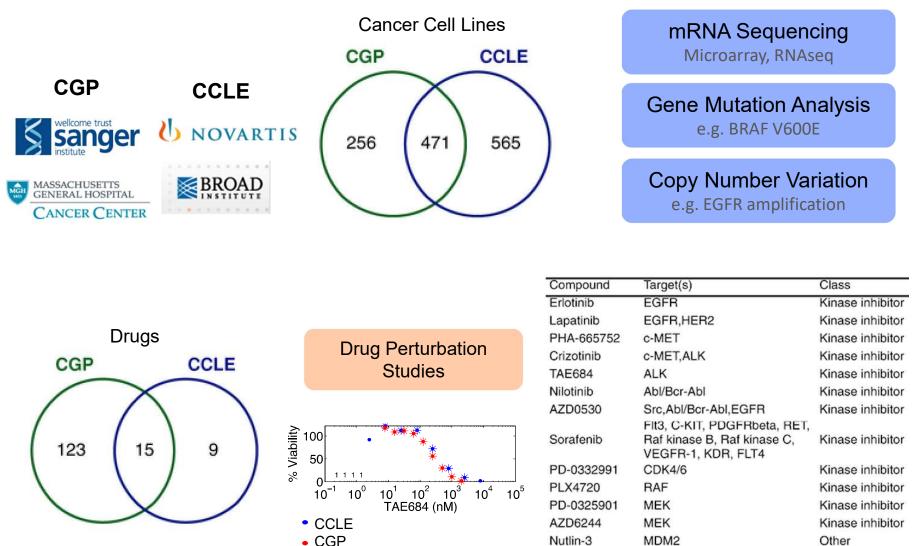
Results Across Drugs and Patients





The Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Project (CGP) Contain Pharmacogenomic Profiles of Cancer Cell

Lines



17-AAG

Paclitaxel

HSP90

beta-tubulin

Other

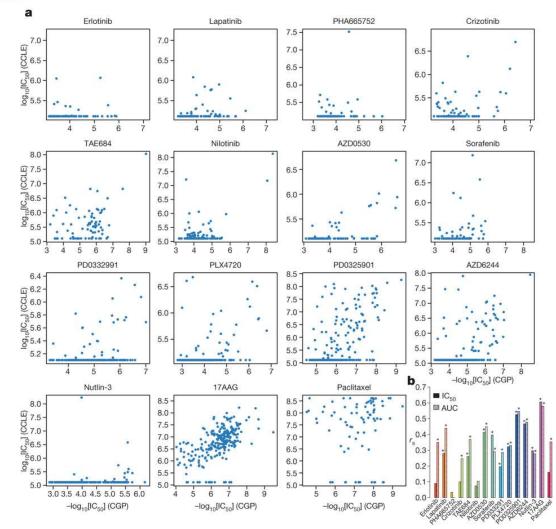
Cytotoxic

y.

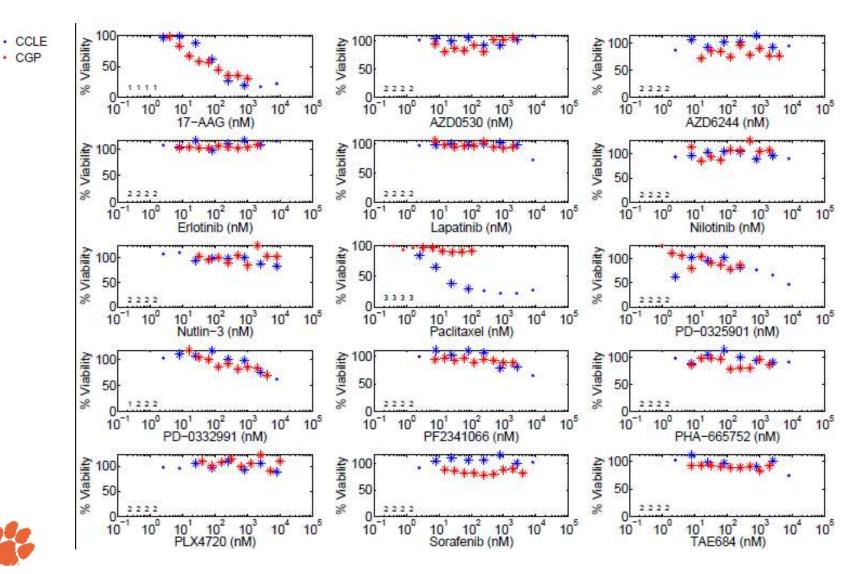
ANALYSIS

Inconsistency in large pharmacogenomic studies

Benjamin Haibe-Kains^{1,2}, Nehme El-Hachem¹, Nicolai Juul Birkbak³, Andrew C. Jin⁴, Andrew H. Beck^{4*}, Hugo J. W. L. Aerts^{5,6,7*} & John Quackenbush^{5,8}*

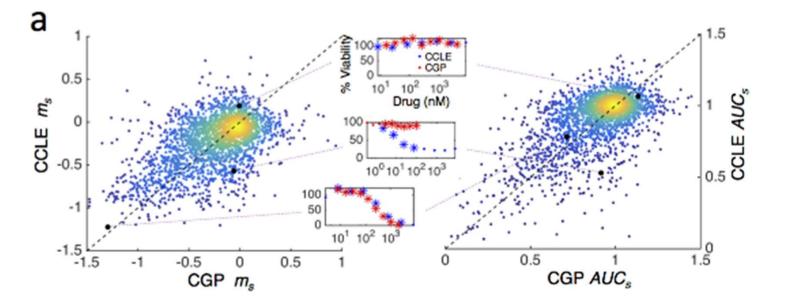


Comparing CCLE and CGP— Manual Look at U87 Responses



41

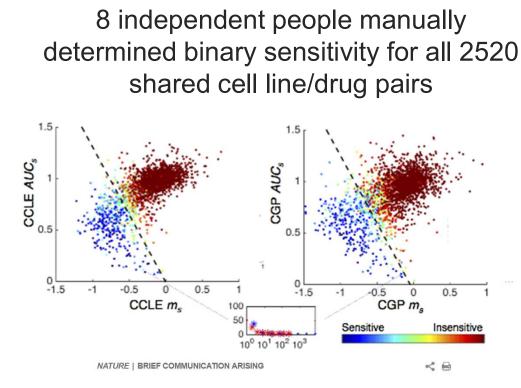
Slope and Area Under Curve Within Shared Dose Range Demonstrate Reasonable Quantitative Agreement



Many cell lines are insensitive to most drugs—IC50 is undefined and not expected to be consistent

Bouhaddou et al., Nature, 2016

Manual Curation of Binary Sensitivity Suggests Consistency



Drug response consistency in CCLE and CGP

Mehdi Bouhaddou, Matthew S. DiStefano, Eric A. Riesel, Emilce Carrasco, Hadassa Y. Holzapfel, DeAnalisa C. Jones, Gregory R. Smith, Alan D. Stern, Sulaiman S. Somani, T. Victoria Thompson & Marc R. Birtwistle

Affiliations | Corresponding author

Nature 540, E9–E10 (01 December 2016) | doi:10.1038/nature20580 Received 15 November 2014 | Accepted 13 October 2016 | Published online 30 November 2016 | Corrected online 19 July 2017



Outline

- Mechanistic Models of Cancer Cell Signaling
 - Formulation, Building, and Training
 - Stochastic Cell Cycle Entry
 - Stochastic Cell Death
- Towards Training with Big Pharmacological Data
- Reconstructing Cell Signaling Networks from Perturbation Time Course Data

Searc

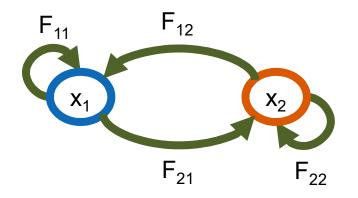
New Results

Network Reconstruction from Perturbation Time Course Data

Gregory R Smith, (B) Mehdi Bouhaddou, Alan D Stern, Caitlin M Anglin, Orrod M Zadeh, Jake Erskin, (B) Marc Birtwistle

doi: https://doi.org/10.1101/341008

Identifying Uncertain or Context-Specific Structural Aspects of Signaling Networks



Chicken and egg problem \rightarrow causality when loops are present?

What experimental designs are sufficient to uniquely identify all such edges, their directionality, and some information about their magnitude?

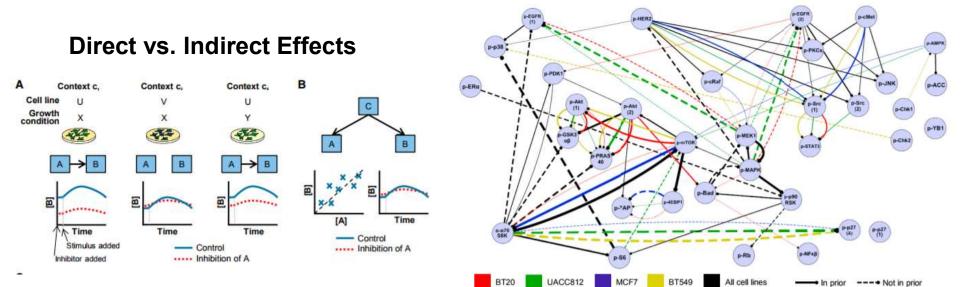
Perturbation Time Courses Can Help

Cell Systems Article

Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling

Steven M. Hill,^{1,12} Nicole K. Nesser,^{2,12} Katie Johnson-Camacho,² Mara Jeffress,³ Aimee Johnson,⁴ Chris Boniface,² Simon E.F. Spencer,⁵ Yiling Lu,⁶ Laura M. Heiser,⁷ Yancey Lawrence,^{2,13} Nupur T. Pande,^{8,9} James E. Korkola,⁷ Joe W. Gray,^{7,9,10} Gordon B. Mills,⁶ Sach Mukherjee,^{1,11,14,*} and Paul T. Spellman^{2,15,*}

Context-Specific Edges



What perturbation time courses are sufficient to uniquely identify all such edges, their directionality, and (perhaps) some information about their magnitude?

Can we infer loops, including self-regulation?

Dynamic Modular Response Analysis

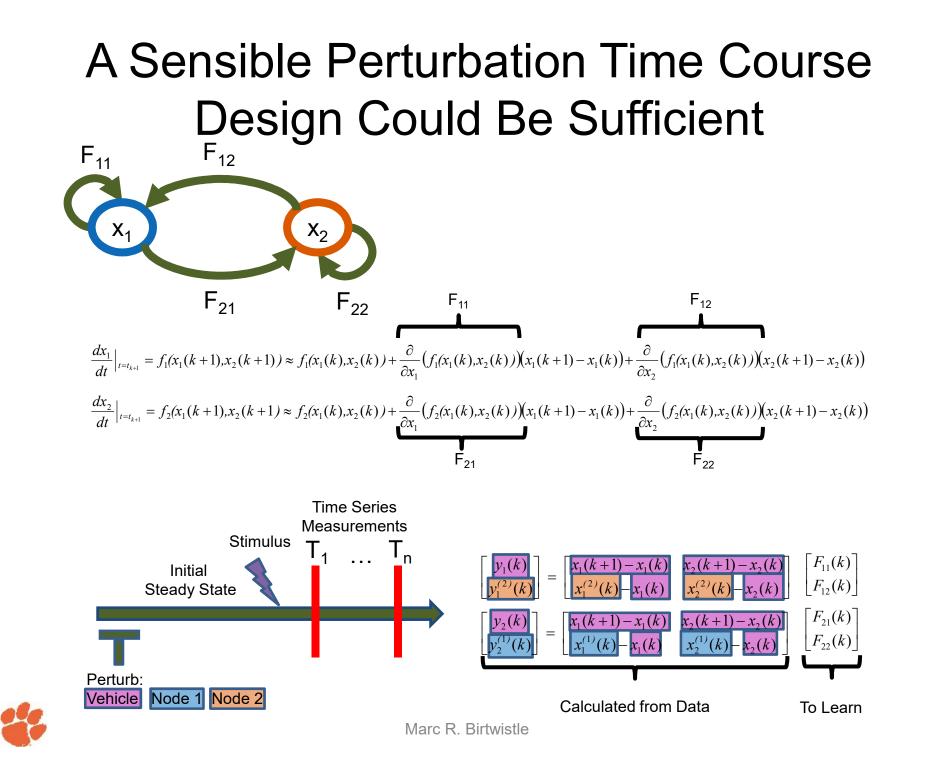
BIOINFORMATICS

Vol. 20 no. 12 2004, pages 1877–1886 doi:10.1093/bioinformatics/bth173

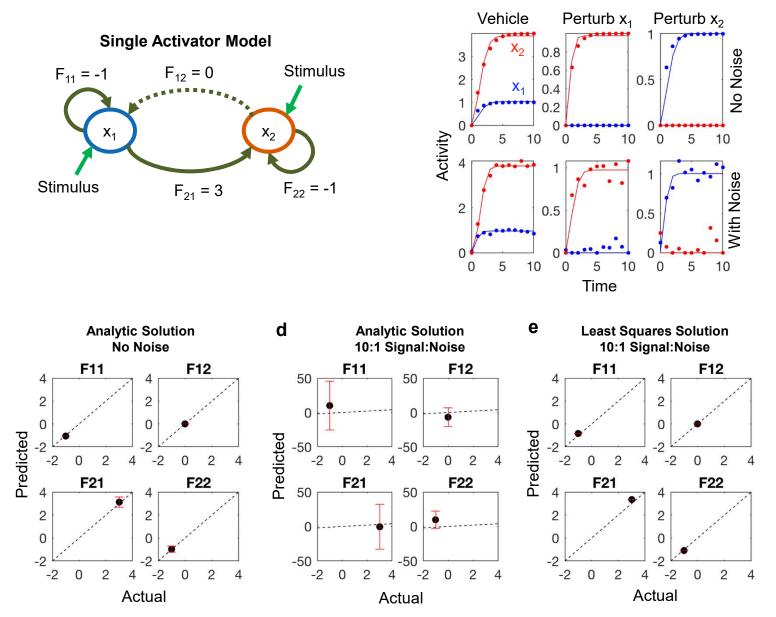
Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data

Eduardo Sontag¹, Anatoly Kiyatkin² and Boris N. Kholodenko^{2,*}

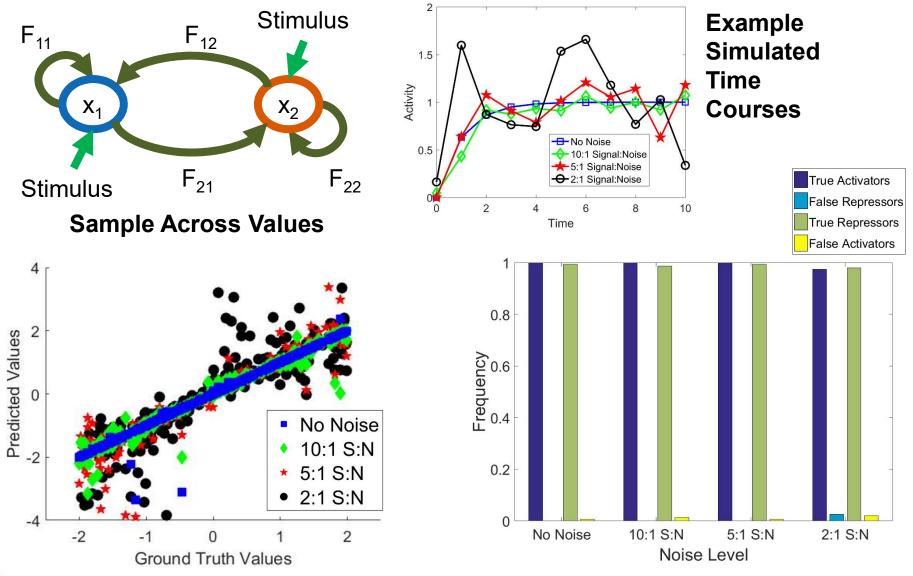
- Requires two perturbations per node (e.g. production and consumption)
- Requires estimates of 1st and 2nd time derivatives



Practical Implementation

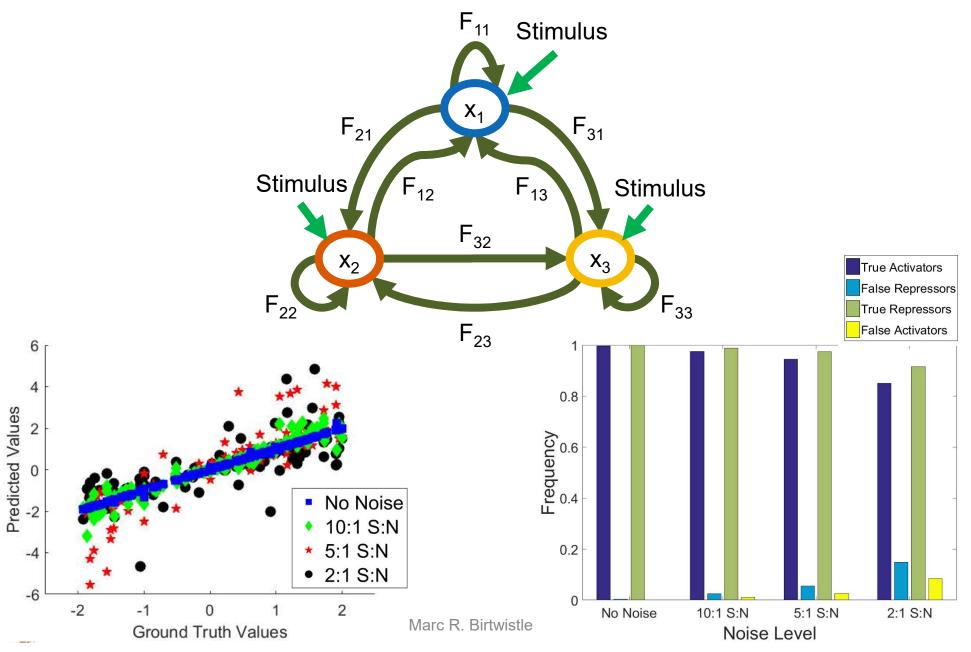


Random Two Node Systems

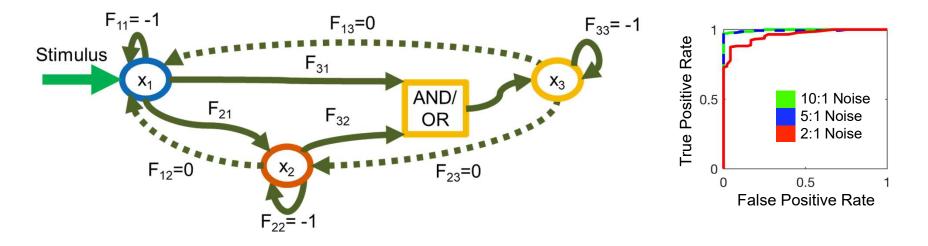


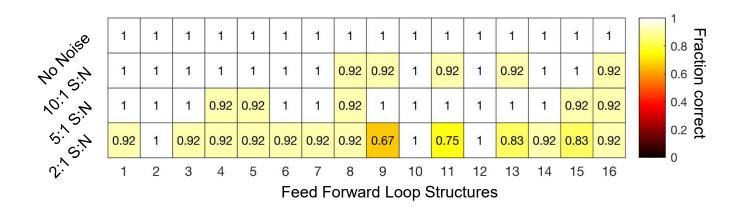
Marc R. Birtwistle

Random Three Node Systems



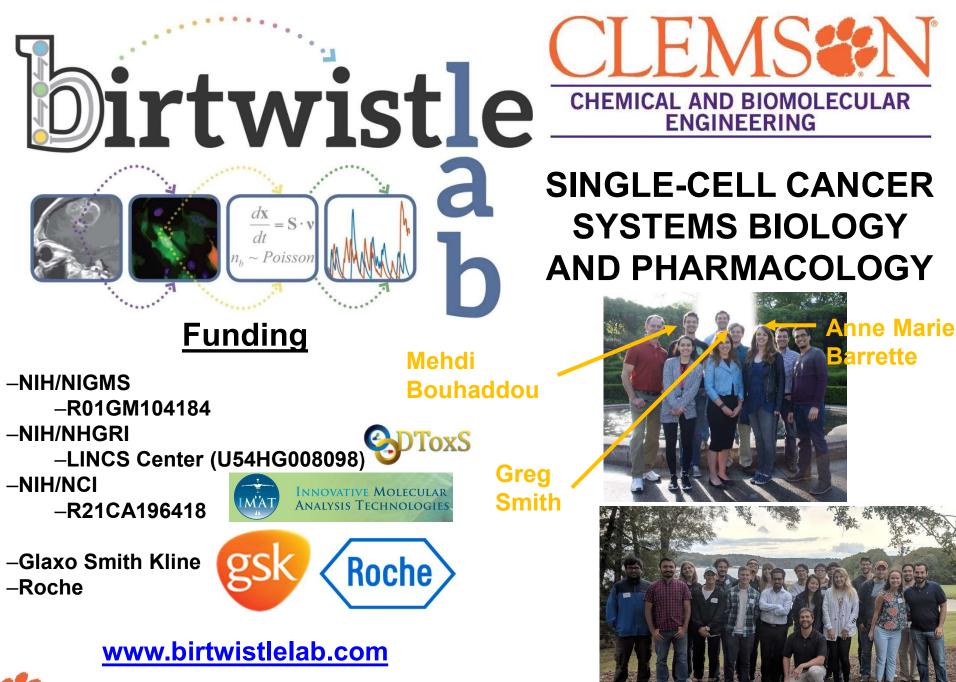
Sixteen Different Feedforward Loop Models





Remaining Questions

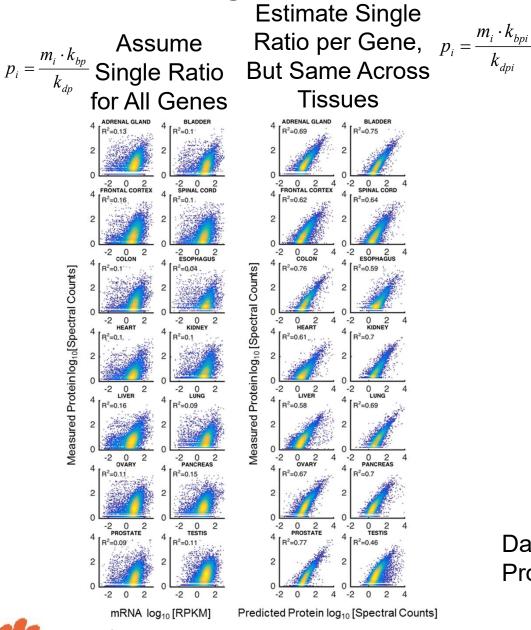
- How does performance scale to larger networks?
- How can we effectively incorporate prior knowledge?
- What about "dirty" perturbations?

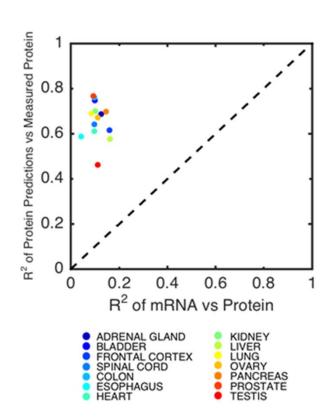


y.

Marc R. Birtwistle

Predicting Protein Levels from mRNA Levels





Data from GTEx and Human Proteome Map for 14 Tissue Types

Alief Moulana, Mehdi Bouhaddou and DeAnalisa Jones, Under Revision