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Snapshot of Attrition During Drug 
Development

2

Waring et al., Nat Rev Drug Discovery, 2015

808 oral small-
molecule compounds 
at their highest 
recorded phase of 
development
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Simulation is Typically an 
Integral Component of Design

• Example of airplane building
– Build many airplanes, see which ones don’t 

crash?
– No! 
– Sufficient understanding of fluid dynamics and 

physics allows simulation to screen design ideas
• Human biology is far more complex and less 

understood—even in how to simulate it
– Need more basic research

o Physiological and pathophysiological mechanisms
o Modeling and simulation methods to capture said 

mechanisms
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Systems Pharmacology
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ModelDrug Outcome

1. Modeling

???Drug Outcome

2. Simulation

ModelDrug ???

3. Control

Model??? Outcome
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Targeted Therapy was found not to 
outperform Physician’s Choice

Genomics ≠ Drugs
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What More Does Cancer Precision 
Medicine Need to Consider?

1. Systems
• Driver may not be a good direct drug target
• Drivers interact; 4-7 drivers per tumor (maybe more)

2. Polypharmacology
• Multiple driversmultiple targetsmultiple drugs
• Most targeted drugs are promiscuous

3. Dynamics
• Tumors adapt and evolve on multiple time scales

4. Heterogeneity
• Clonal cells show transient resistance
• Cancers comprise multiple subclones with different 

drivers and microenvironments
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One DriverOne TargetOne Drug
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Quantitative Systems Pharmacology:  Mechanistic 
Kinetic Modeling of Biochemical Networks
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Stochastic Gene Expression
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Outline
• Mechanistic Models of Cancer Cell Signaling

– Formulation, Building, and Training

– Stochastic Cell Cycle Entry

– Stochastic Cell Death

• Towards Training with Big Pharmacological 
Data

• Reconstructing Cell Signaling Networks from 
Perturbation Time Course Data
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Defining Model Scope

Pathways:
• RTK-RAS-RAF-MAPK
• PI3K-AKT-mTOR
• Cell Cycle
• p53-DNA Damage

Adapted from Ciriello G et al., Nature Genetics 2013



Submodel Origin

Receptor 
Tyrosine 
Kinase

• Birtwistle MR et al., MSB 2007
• Bouhaddou M & Birtwistle MR, 

Mol Biosys 2014
• Many others

Proliferation & 
Growth

• Birtwistle MR et al., MSB 2007
• Nakakuki T et al., Cell 2010
• Kriegsheim A et al., Nat Cell Bio

2009

DNA Damage • Batchelor E et al., MSB, 2011

Cell Cycle
• Gerard C & Goldbeter A, PNAS 

2009

Apoptosis
• Albeck JG et al., Plos Biology 

2008

Expression The standard model System of ordinary differential equations (ODEs)
~800 species and ~2800 reactions

Model is Composed of Pathway-Specific Models from the Literature



Model considers 141 
genes

f

TRANSLATION

DEATH
RECEPTORS

Grb-2, SOS, Cbl, Sprouty, 
Ras, C-Raf, B-Raf, MEK, 
ERK, cJun, cFos, NF1, 

DUSP6, DUSP1, RSK, IRS, 
PLCg, GRP, PI3KC1, PI3KR1, 

PI3K2, PTEN, PDK1, AKT, 
FOXO, GSK3-β, bCatenin, 

cMyc

PROLIFERATION
GROWTH

TSC1, TSC2, mTOR, 
Rictor, Raptor, S6K, 
EIF4EBP1, EIF4E, 

Ribosomes 

MITOCHONDRIA

EPIGENETICS

TRANSCRIPTION
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NUCLEUS

CYTOPLASM

EXTRACELLULAR SPACE

DEATH

DIVISION

DNA DAMAGE
ATM, ATR, p53, WIP1, 
MDM2, MDM4, ARF, 

BRCA2, MSH6, MGMT

EGFR, Erbb2, Erbb3, Erbb4, 
cMet, PDGFR, FGFR, IGFR, 

INSR, EGF, HRG, HGF, PDGF, 
FGF, IGF, Insulin

RECEPTOR 
TYROSINE KINASE

APOPTOSIS
TRAIL ligand, TRAIL 

receptors (DR4-DR5), 
Caspases 8/3/6/9, tBID, 

BIM, BAX, Cytochrome C, 
APAF, XIAP, PARP, Flip, 

Bar, Smac, Bad, Bcl2, 
PUMA, NOXA

CELL CYCLE
Cyclins D/E/A/B, CDKs 

4/6/2/1, Chk1, p21, 
p27, E2F, Rb, Wee1, 

CDH1, CDC25A, 
CDC25B, CDC25C, 

Skp2, Cdc20

EXPRESSION
Genes and 

mRNAs

A Prettier Picture



 

 Adapted from Gascoigne and Taylor, Cancer Cell 2008

Single Cells Have Stochastic Response to Drugs



Cell-to-cell variability: Simulating Stochastic Gene Expression

Transcriptional 
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Increasing Confidence in Models
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Evaluate input-output 
behavior of individual 

sub-models

Evaluate input-
output behavior of 
model as a whole

Use model to reason 
about biological 

observations

UNIT TESTING
INTEGRATED 
UNIT TESTING ANALYSIS

Cell context:  Start with non-transformed MCF10A
• Predictable phenotypic behaviors
• Few alterations
• Extensive literature data and widely studied



Unit Testing—Expression: Tailoring Model to Quantitative 
Expression Context

TRANSCRIPTOMICS
(RNA-seq)

PROTEOMICS
(Mass Spectrometry)

SAMPLE

PROTEIN 
LEVELS

mRNA 
LEVELS

GENOMICS*
(Sequencing) GENE COPY 

NUMBER*

Define “expression context”:
1. GENOME: Gene copy number
2. TRANSCRIPTOME: mRNA levels
3. PROTEOME: Protein levels

* Bessette et al., Plos One 2015
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Unit Testing – Receptor Tyrosine Kinase (RTK)

EGFR      ErbB2     ErbB3                  ErbB4

cMET PDGFR  FGFR  IGFR   INSR

Negative cooperativity (n<1)
No cooperativity (n=1)
Positive cooperativity (n>1)

LITERATURE DICTATES
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Micro-Western Blot

Experiments by Rick Koch and Anne Marie Barrette

Unit Testing – Proliferation & Growth

ERK AKT

mTOR

EGF and Insulin

ERK

AKT

mTOR



Unit Testing
Submodel Required Properties for Each Submodel

Receptor 
Tyrosine Kinase

• Ligand-receptor cooperativity matches experimental observations.
• Receptor trafficking kinetics reflects experimental observations.

Proliferation &
Growth

• Receptor pathway preferences match experimental observations.
• Basal activity fluxes through ERK and AKT pathways exist, tailored to the serum-starved state.
• Dynamic dose responses of ERK, AKT, and mTOR signaling matches experimental western blot 

data.

Cell Cycle • Cell cycle entry is driven by induction of cyclin D mRNA. 
• Order and timing of cyclin/cdk complexes matches established observations. 
• Cell cycle duration matches that in MCF10A cells. 
• Upregulation of p21 arrests the cell cycle. 

Apoptosis • Robustness against small death signals. 
• Model exhibits all-or-nothing death response when apoptosis signaling surpasses threshold. 
• Dose and dynamics of TRAIL-induced extrinsic apoptosis matches experimental observations. 
• Intrinsic apoptosis signaling responds to interrupted survival signaling and DNA damage induced 

upregulation of pro-apoptotic proteins. 

DNA Damage • Convert original delayed differential equations into ordinary differential equations.
• p53 dynamics corresponding to single- and double-stranded DNA breaks matches experimental 

observations. 
• Rate of DNA damage repair is dependent on levels of repair enzymes. 
• p53 activation dynamics exhibit “digital” and not “analog” behavior, whereby the number of p53 

pulses, but not pulse height or width, scales to magnitude of DNA damage. 
• Etoposide-induced DNA damage is dependent on the cell cycle stage (S-phase). 

Expression • Model is tailored to genomic, transcriptomic, and proteomic context of MCF10A cells. 
• Stochastic gene expression is simulated with a computationally efficient algorithm. 
• Cell-to-cell variability in mRNA and protein levels matches experimental observations. 
• EIF4E levels possess extrinsic control over the translation rate. 
• Ribosomes double during the course of one cell cycle. 



Integrated Unit Testing – Cell Cycle
How are synergistic EGF and Insulin signals integrated by 

the cell? 

PROLIFERATION

DEATH

DIVISION

DNA 
DAMAGE

APOPTOSIS

CELL 
CYCLE

mitogens kinase inhibitors

chemotherapy



Spatiotemporal Dynamics of Signaling?

Adapted from Marshall, Cell, 1995

PC-12 Cells

Transient

Sustained
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HEK293 cells

Short times (under 15 min)



Integrated Unit Testing – Cell Cycle
How are synergistic EGF and Insulin signals integrated by 

the cell? 
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Analysis:  Prolonged AKT Activation Explains EGF and 
Insulin S-Phase Synergy 
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Inhibitor Time Course Experiments

Seed cells starve 
cells

treat cells 
with GF

add 
Inhibitors

post GF
post GF

post GF

post GF

harvest 
cells

0 h ~ 18  h ~42 h

(~24h post 
starvation)

(24 h post GF 
treatment)

~66 h
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SIMULATION: In response to EGF + Insulin

Analysis – Cell Cycle: 
Phospho-ERK levels dictate stochastic cell cycle entry



BRaf & CRaf
BRaf only
CRaf only
ERK & AKT
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Based on total initial protein levels
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EGFR

GRB2

RAS

NF1

CRaf

BRaf

MEK

ERK

SOS

Protein (mpc)

In MCF10A cells:

Analysis – Cell Cycle: 
Can Stochastic Cell Cycle Response Be Predicted?

1. Lasso regression
Predictors: Total initial protein levels
Responses: Cycling or non-cycling
 BRaf and CRaf were top hits

2. Train SVM classifier with top hits

3. Test performance of classifier

Kim and Bar-Sagi, Nat Rev Mol Cell Bio 2004
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Emerging logic of integrative S-phase entry control



ppAKT

pBAD BAD

pFOXO FOXO

Bax
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ppERK

Bcl2

FOXOnuc

APOPTOSIS

Bcl2

Analysis – Apoptosis:
Mechanistic Insight into Drug Synergy
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Initial levels
Average for 8 hours
Average for 40 hours

False Positive Rate
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Is the Model Predictive in Different Contexts?

Tailoring:
Model initialized 
with mRNAseq
data (us) and 

mutations 
(literature) from 

U87 cells.
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Outline
• Mechanistic Models of Cancer Cell Signaling

– Formulation, Building, and Training

– Stochastic Cell Cycle Entry

– Stochastic Cell Death

• Towards Training with Big Pharmacological 
Data

• Reconstructing Cell Signaling Networks from 
Perturbation Time Course Data
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Vision for Such Models

• Given a patient, what drug(s) to use?
– Precision medicine

– Dose and scheduling optimization

• Given a drug, what patient(s) will respond?
– Inclusion in or exclusion from clinical trials

– What drugs to combine

Marc R. Birtwistle 35
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Tailoring the Model to 14 Glioblastoma (GBM) Patients 
from The Cancer Genome Atlas (TCGA)

Three Promiscuous Kinase Inhibitors or Their 
Combinations for a Heterogeneous Tumor



Modeling Three Promiscuous, 
Brain-Penetrant Kinase Inhibitors
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Drug Gene Targets Model Targets k_on (1/s/nM) k_off (1/s)

Bosutinib MAP2K1/MAP2K2 MEK 1 288

RPS6KA1/RPS6KA3 RSK 1 1115

PRKCA/PRKCG PKC 1 1567

CHEK1 Chk1 1 1168

FGFR1 Fr 1 2206

IGF1R Ir 1 2285

INSR Isr 1 669

PDGFRA Pr 1 3081

Ibrutinib BRAF Braf 1 1128

EGFR E1 1 18

ERBB3 E3 1 1

FGFR1/FGFR2 Fr 1 707

GSK3B GSK3b 1 2571

IGF1R Ir 1 4882

INSR Isr 1 1326

MTOR mTOR 1 8091

PDPK1 PDK1 1 2448

PIK3CA/PIK3CB/PIK3CD/PIK3CG PI3KC1 1 2039

RAF1 Craf 1 2333

RPS6KA1/RPS6KA3/RPS6KA2 RSK 1 6447

Cabozantinib BRAF Braf 1 2961

EGFR E1 1 864

FGFR1/FGFR2 Fr 1 2153

IGF1R Ir 1 8236

INSR Isr 1 1880

MAP2K1 MEK 1 214

MET MET 1 1

PDGFRA Pr 1 1

PIK3CA PI3KC1 1 1084

PIK3R1 PI3KR1 1 1084

RAF1 Craf 1 1078



Results Across Drugs and Patients
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The Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome 
Project (CGP) Contain Pharmacogenomic Profiles of Cancer Cell 

Lines

Drug Perturbation 
Studies

Drugs

CCLE
CGP

Cancer Cell Lines mRNA Sequencing
Microarray, RNAseq

Gene Mutation Analysis
e.g. BRAF V600E

Copy Number Variation
e.g. EGFR amplification

CGP CCLE
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Comparing CCLE and CGP—
Manual Look at U87 Responses
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Slope and Area Under Curve Within 
Shared Dose Range Demonstrate 

Reasonable Quantitative Agreement

Marc R. Birtwistle 42

Many cell lines are insensitive to most 
drugs—IC50 is undefined and not 

expected to be consistent
Bouhaddou et al., Nature, 2016



Manual Curation of Binary Sensitivity 
Suggests Consistency

Marc R. Birtwistle 43

8 independent people manually 
determined binary sensitivity for all 2520 

shared cell line/drug pairs



Outline
• Mechanistic Models of Cancer Cell Signaling

– Formulation, Building, and Training

– Stochastic Cell Cycle Entry

– Stochastic Cell Death

• Towards Training with Big Pharmacological 
Data

• Reconstructing Cell Signaling Networks from 
Perturbation Time Course Data
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Identifying Uncertain or Context-
Specific Structural Aspects of 

Signaling Networks

Marc R. Birtwistle 46

x2x1

F11
F12

F21 F22

Chicken and egg problemcausality when loops are present?

What experimental designs are sufficient to uniquely identify all such 
edges, their directionality, and some information about their magnitude? 



Perturbation Time Courses Can Help

Marc R. Birtwistle 47

Direct vs. Indirect Effects

Context-Specific Edges

What perturbation time courses are sufficient to uniquely identify all 
such edges, their directionality, and (perhaps) some information about 
their magnitude?

Can we infer loops, including self-regulation?  



Dynamic Modular Response 
Analysis

• Requires two perturbations per node (e.g. 
production and consumption)

• Requires estimates of 1st and 2nd time 
derivatives

Marc R. Birtwistle 48



A Sensible Perturbation Time Course 
Design Could Be Sufficient

Marc R. Birtwistle 49
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Practical Implementation
Single Activator Model
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Random Two Node Systems
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Random Three Node Systems
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Sixteen Different Feedforward Loop Models
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Remaining Questions

• How does performance scale to larger 
networks? 

• How can we effectively incorporate prior 
knowledge?

• What about “dirty” perturbations?
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SINGLE-CELL CANCER 
SYSTEMS BIOLOGY 

AND PHARMACOLOGY
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Predicting Protein Levels from mRNA Levels
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Data from GTEx and Human 
Proteome Map for 14 Tissue Types

Alief Moulana, Mehdi Bouhaddou and DeAnalisa Jones, Under Revision

Assume 
Single Ratio 
for All Genes

Estimate Single 
Ratio per Gene, 

But Same Across 
Tissues
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