# Basics of Combustion, Fuels and Air Pollutants

for

**Virtual AIChE Local Chapter** 

April 25, 2013

#### **Thomas F. McGowan PE**

TMTS Associates, Inc.

tfmcgowan@mindspring.com

404 627 4722

www.tmtsassociates.com

© 2013 Tom McGowan & JJ Santoleri

Combustion Basics Includes material from J.J.Santoleri's Drexel University Incineration Course at Drexel University

# You will learn about:

- Fuel properties
- Combustion calculations
- Air/fuel ratio and excess air
- Flame temperatures
- Combustion generated air pollution

# **COMBUSTION BASICS**

- Combustion Reactions
- The Three T's
  - (Time, Temperature and Turbulence)
- The Ideal Gas Law

#### **Flame from Batch Kiln Test**



#### **Flame Types**

It can be said there are no bad burners but they can be misapplied, and be the wrong burner for a particular application

| Manufacturing Company                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INDUSTRIAL FLAME TYPES<br>Handbook Supplement 230<br>April 1997 |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| LAME TYPE                                       | GAS†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OIL†                                                            |
| Conventional forward (feather)                  | A CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |
| B Headpin<br>(IFRF* type I)                     | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ()                                                              |
| Ball >0.6                                       | test the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                  |
| D conical >1.0                                  | ALL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| E Flat (coanda)                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.                                                              |
| F Long, luminous, iazy                          | Contraction of the local division of the loc |                                                                 |
| G Long, luminous, firehose<br>(IFRF* type zero) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| H High velocity                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |

#### TERMINOLOGY

Some terms and their definitions used in this section are:

- HHV: Higher heating value of a fuel in Btu/lb, also known as gross heating value.
- LHV: Lower heating value of a fuel. Equal to HHV latent heat of vaporization of water formed from hydrogen in the fuel or moisture in the fuel. Also known as net heating value.
- XS air: Excess air percent. This is the amount of air exceeding that required to completely combust the fuel.
- TA: Theoretical Air = Stoichiometric air = 0% XS air, the exact amount of air needed to burn a fuel.
- ppm: Parts per million; for gases, on volume basis.

#### TERMINOLOGY

- ppmvd: ppm, by volume, dry basis, water excluded.
- acfm: Actual cubic feet per minute of a gas at measured temperature and pressure.
  acfm = scfm x ((T°F+460)/520) x (14.7/P in psia)
- scfm: Standard cubic feet per minute of gas (@ 60°F, 14.7 psia)
- dscfm: Dry scfm (scfm less water vapor).
- AFT: Adiabatic flame temperature.
- Available

heat: The percent of heat input to a combustion system that can be transferred to the load (furnace, boiler, air heater or incinerator) at a given exit flue gas temperature.



**Combustion Reactions** 

#### Combustion is a rapid combination of oxygen and fuel that results in the release of heat

# The Three T's

# Always keep in mind the 3 T's of combustion:

- Time
- Temperature
- Turbulence

If all three exist in adequate amounts, plus the right amount of oxygen, good combustion will occur

# **Common Fuels**

- Natural gas
- Propane (LPG)
- Fuel oils (Nos. 1 through 6)
- Coal, coke, and wood
- Wastes—solid, liquid, sludge, and VOCs

#### **Basic Combustion Calculations**

#### (With oxygen as the oxidizer)

| Carbon                               | С  | + | O <sub>2</sub> | $\rightarrow$ | CO <sub>2</sub> |  |  |  |  |
|--------------------------------------|----|---|----------------|---------------|-----------------|--|--|--|--|
| Mols                                 | 1  | · | 1              |               | 1               |  |  |  |  |
| Wt.                                  | 12 |   | 32             |               | 44              |  |  |  |  |
| Lb/lb fuel                           | 1  |   | 2.66           |               | 3.66            |  |  |  |  |
| Heat released: 14,100 Btu/lb of fuel |    |   |                |               |                 |  |  |  |  |

| Hydrogen                             | $H_2$ | + | 1/2 <b>O</b> 2 | $\rightarrow$ | $H_2O$ |  |  |  |
|--------------------------------------|-------|---|----------------|---------------|--------|--|--|--|
| Mols                                 | 1     |   | 1/2            |               | 1      |  |  |  |
| Wt.                                  | 2     |   | 16             |               | 18     |  |  |  |
| Lb/lb fuel                           | 1     |   | 8              |               | 9      |  |  |  |
| Heat released: 61,100 Btu/lb of fuel |       |   |                |               |        |  |  |  |

### **Basic Combustion Calculations**

The Stoichiometric Ratio is the ratio of oxygen to fuel that is required to complete perfect combustion with no unused fuel or oxygen = 0% XS Air.

| Input       |                               |      |                        |   |                      |                 |        |
|-------------|-------------------------------|------|------------------------|---|----------------------|-----------------|--------|
| Methane     | CH <sub>4</sub>               | +2   | <b>(O</b> <sub>2</sub> | + | 3.76N <sub>2</sub> ) | $\rightarrow$ — |        |
| Mols        | 1                             |      | 2                      |   | 7.52                 |                 |        |
| Wt.         | 16                            |      | 64                     |   | 211                  |                 |        |
| Lb/lb fuel  | 1                             |      | 4                      |   | <b>13.2</b> (        | Air =17.2)      |        |
|             |                               |      |                        |   |                      |                 |        |
| Output      |                               |      |                        |   |                      |                 |        |
|             | $\rightarrow$ CO <sub>2</sub> | +    | 2H <sub>2</sub> O      | + | 7.52N <sub>2</sub>   |                 | Totals |
| Mols        | 1                             |      | 2                      |   | 7.52                 |                 | 10.5   |
| Wt.         | 44                            |      | 36                     |   | 211                  |                 | 291    |
| Lb/lb fuel  | 2.74                          |      | 2.25                   |   | 13.2                 |                 | 18.2   |
| Vol. %, wet | 9.5 (= 1/1                    | 0.5) | 19.0                   |   | 71.5                 | ÷               |        |
| Vol. %, dry | 11.7 (= 1/8                   | 5.5) | N/A                    |   | 88.3                 |                 |        |
| Wt. %       | 15.1 (= 44/                   | 291) | 12.4                   |   | 72.5                 |                 |        |

#### Methane with 0% excess air as the oxidizer

Heat released: 23,879 Btu/lb of fuel higher heating value

#### **Basic Combustion Calculations**

Note: Some excess air is used to compensate for less-than-ideal situations, and to help assure that adequate oxygen is available for complete combustion. In some cases, it's needed to limit temperature, such as for dryers.

| Input       |                               |        |                        |    |                      |                   |         |
|-------------|-------------------------------|--------|------------------------|----|----------------------|-------------------|---------|
| Methane     | CH₄                           | +2 x 2 | <b>(O</b> <sub>2</sub> |    | + 3.76N <sub>2</sub> | $\rightarrow$ -   |         |
| Mols        | 1                             |        | 2 x 2                  | 2  | 2 x 7.5              | 2                 |         |
| Wt.         | 16                            |        | 2 x 6                  | 64 | 2 x 21 <sup>·</sup>  | 1                 |         |
| Lb/lb fuel  | 1                             |        | 2 x 4                  | 4  | 2 x 13.              | 2 (Air =          | = 34.4) |
|             |                               |        |                        |    |                      | •                 | ,       |
| Output      |                               |        |                        |    |                      |                   |         |
|             | $\rightarrow$ CO <sub>2</sub> | + 2    | 2H <sub>2</sub> O      | +  | 15.0N <sub>2</sub>   | + 2O <sub>2</sub> | Totals  |
| Mols        | 1                             |        | 2                      |    | 2 x 7.53             | 2                 | 20      |
| Wt.         | 44                            |        | 36                     |    | 2 x 211              | 64                | 565     |
| Lb/lb fuel  | 2.74                          |        | 2.25                   |    | 2 x 13.2             | 4                 | 35.4    |
| Vol. %, wet | 5                             | 10     | )                      |    | 75                   | 10                |         |
| Vol. %, dry | 5.54                          | N      | Ά                      |    | 83.3                 | 11.1              |         |
| Wt. %       | 7.8                           | 6.     | 4                      |    | 74.5                 | 11.3              |         |

(Methane with 100% excess air)

(Note: A mole of any gas = 378.7 ft3 at standard conditons)

|                                                  |                                |             |                    |                   |                          | т                                                                          | able 1 | c       | ombus            | tion   | Const                                                                | ants   |      |                  |        |        |                                                   |        |        |                  |         |           |
|--------------------------------------------------|--------------------------------|-------------|--------------------|-------------------|--------------------------|----------------------------------------------------------------------------|--------|---------|------------------|--------|----------------------------------------------------------------------|--------|------|------------------|--------|--------|---------------------------------------------------|--------|--------|------------------|---------|-----------|
| Molecu- 5                                        | Sp Gr                          | H<br>Btu pe | leat of C          | ombustic<br>Btu p | on <sup>e</sup><br>er Lb | Cu Ft per Cu Ft of Combustible<br>Required<br>for Combustion Flue Products |        |         |                  |        | Lb per Lb of Combustible<br>Required<br>for Combustion Flue Products |        |      |                  |        |        | Experimental<br>Error in<br>Heat of<br>Combustion |        |        |                  |         |           |
| No. Substance                                    | Formula                        | Weight*     | Cu Ft <sup>b</sup> | per Lbb           | 1.000*                   | Gross                                                                      | Net    | Gross   | Net <sup>d</sup> | 02     | N <sub>2</sub>                                                       | Air    | CO2  | H <sub>2</sub> O | Nz     | 02     | Nz                                                | Air    | COz    | H <sub>2</sub> O | Nz      | + or -    |
| 1 Carbon                                         | c                              | 12.01       | -                  | -                 | -                        | -                                                                          |        | 14,093# | 14,093#          | -      | -                                                                    | in.    |      | -                | -      | 2.664  | 8.863                                             | 11.527 | 3.664  | -                | B.863   | 0.012     |
| 2 Hydrogen                                       | H,                             | 2.016       | 0.005327           | 187.723           | 0.06959                  | 325.0                                                                      | 275.0  | 61,100  | 51,623           | 0.5    | 1.882                                                                | 2.382  | -    | 1.0              | 1.882  | 7.937  | 26.407                                            | 34.344 | -      | 8.937            | 26.407  | 0.015     |
| 3 Oxygen                                         | 0,                             | 32.000      | 0.08461            | 11.819            | 1.1053                   | - 10 <u>- 1</u>                                                            | -      |         |                  | 1.20   | -                                                                    |        | -    | 4                | -      | -      | 00000 (SDD                                        | -      | - 22   |                  | -       | -         |
| 4 Nitrogen (atm)                                 | N <sub>2</sub>                 | 28,016      | 0.07439*           | 13,443*           | 0.9718*                  | -                                                                          | -      | -       | -                | -      | -                                                                    | -      | _    | -                | -      | -      | -                                                 | -      | -      | -                | -       | -         |
| 5 Carbon monoxide                                | cô                             | 28.01       | 0.07404            | 13,506            | 0.9672                   | 321.8                                                                      | 321.8  | 4 347   | 4.347            | 0.5    | 1.882                                                                | 2 382  | 1.0  | _                | 1.882  | 0.571  | 1.900                                             | 2.471  | 1.571  | -                | 1,900   | 0.045     |
| 6 Carbon dioxide                                 | CO2                            | 44.01       | 0.1170             | 8.548             | 1.5282                   | -                                                                          | -      | -       | -                | -      | -                                                                    | -      | 2    | -                | - 22   | -      | _                                                 | -      | 1      | -                | -       | -         |
| Parallin series CnHza+2                          | 1                              |             |                    |                   |                          |                                                                            |        |         |                  | l      |                                                                      |        |      |                  |        | 1      |                                                   |        |        |                  |         |           |
| 7 Methane                                        | CH4                            | 16.041      | 0.04243            | 23.565            | 0.5543                   | 1013.2                                                                     | 913.1  | 23,879  | 21,520           | 2.0    | 7.528                                                                | 9.528  | 1.0  | 2.0              | 7.528  | 3.990  | 13.275                                            | 17.265 | 2.744  | 2.246            | 13.275  | 0.033     |
| 8 Ethane                                         | CoHe                           | 30.067      | 0.08029*           | 12.455*           | 1.04882*                 | 1792                                                                       | 1641   | 22.320  | 20,432           | 3.5    | 13.175                                                               | 16.675 | 2.0  | 3.0              | 13.175 | 3.725  | 12.394                                            | 16.119 | 2.927  | 1.798            | 12.394  | 0.030     |
| 9 Propane                                        | CiHe                           | 44.092      | 0.1196*            | 8.365*            | 1.5617*                  | 2590                                                                       | 2385   | 21.661  | 19.944           | 5.0    | 18.821                                                               | 23.821 | 3.0  | 4.0              | 18.821 | 3.629  | 12.074                                            | 15,703 | 2,994  | 1.634            | 12.074  | 0.023     |
| 10 n-Butane                                      | C.H.                           | 58,118      | 0.1582*            | 6.321*            | 2.06654*                 | 3370                                                                       | 3113   | 21.308  | 19.680           | 6.5    | 24.467                                                               | 30.967 | 4.0  | 5.0              | 24.467 | 3.579  | 11.908                                            | 15.487 | 3.029  | 1.550            | 11,908  | 0.022     |
| 11 Isobutane                                     | C.H.                           | 58 118      | 0.1582*            | 6 321             | 2.06654*                 | 3363                                                                       | 3105   | 21 257  | 19.629           | 65     | 24 467                                                               | 30 967 | 4.0  | 5.0              | 24 467 | 3 579  | 11 908                                            | 15 487 | 3 029  | 1 550            | 11 908  | 0.019     |
| 12 n.Pentane                                     | C.H.                           | 72 144      | 0 1904             | 6 2524            | 2 48724                  | 4016                                                                       | 3709   | 21 091  | 19617            | 80     | 30 114                                                               | 38 114 | 5.0  | 6.0              | 30 114 | 3 549  | 11.805                                            | 16 363 | 3 050  | 1 498            | 11 805  | 0.025     |
| 12 Inconstant                                    | CH                             | 72 144      | 0.1004             | 6.96.94           | 2 40724                  | 4000                                                                       | 3716   | 21.062  | 10 470           | 0.0    | 20 114                                                               | 30.114 | 5.0  | 6.0              | 20.114 | 3 540  | 11.000                                            | 16 969 | 3.000  | 1 400            | 11 0/16 | 0.023     |
| 14 Necesstand                                    | CH                             | 72.144      | 0.1904             | E 25.24           | 2.4072*                  | 2002                                                                       | 3/10   | 20,020  | 10,205           | 0.0    | 30.114                                                               | 30.114 | 5.0  | 6.0              | 20.114 | 3.340  | 11.009                                            | 10.353 | 3.050  | 1,490            | 11.005  | 0.071     |
| 15 n-Hexane                                      | CeHie                          | 86.169      | 0.2274*            | 4.398             | 2.9704*                  | 4762                                                                       | 4412   | 20,940  | 19,403           | 9.5    | 35.760                                                               | 45.260 | 6.0  | 7.0              | 35.760 | 3.548  | 11,738                                            | 15.266 | 3.064  | 1.490            | 11.738  | 0.05      |
| Olefin series C.H.                               |                                |             |                    |                   |                          |                                                                            |        |         |                  |        |                                                                      |        |      |                  |        |        |                                                   |        |        |                  |         | 1.0000000 |
| 16 Ethylone                                      | C.H.                           | 28.051      | 0.07456            | 13 412            | 0.9740                   | 1613.8                                                                     | 1513.2 | 21 644  | 20 295           | 30     | 11 293                                                               | 14 293 | 2.0  | 2.0              | 11 203 | 3 422  | 11 385                                            | 14 807 | 3 1 38 | 1 285            | 11.385  | 0.021     |
| 17 Providence                                    | C.H.                           | 42 077      | 0 1110*            | 9 007             | 1.4504*                  | 2336                                                                       | 2185   | 21 041  | 19 691           | 45     | 16 070                                                               | 21 430 | 3.0  | 3.0              | 16 030 | 3 422  | 11 385                                            | 14 807 | 9 198  | 1 295            | 11 395  | 0.021     |
| 19 p. Butene (Butulene)                          | CH                             | 56 102      | 0 14905            | 6 75.64           | 1.03364                  | 2004                                                                       | 2005   | 20,041  | 10,001           | 6.0    | 22 606                                                               | 21.435 | 4.0  | 4.0              | 22 606 | 3.422  | 11 305                                            | 14.007 | 3 1 20 | 1.000            | 11 305  | 0.031     |
| 10 Instructions                                  | CH                             | 56 102      | 0.1400*            | 6.750             | 1.9330                   | 3064                                                                       | 2000   | 20,040  | 10,909           | 6.0    | 22.303                                                               | 20.000 | 4.0  | 4.0              | 22.303 | 3.466  | 11,305                                            | 14.007 | 3.130  | 1,200            | 11.300  | 0.031     |
| 19 isobuterie                                    | Culta                          | 30,102      | 0.1460*            | 6.700*            | 1.9330                   | 3000                                                                       | 2009   | 20,730  | 19,382           | 0.0    | 22.585                                                               | 28.989 | 4.0  | 4.0              | 22.080 | 3.422  | 11.385                                            | 14.807 | 3.138  | 1.285            | 11.385  | 0.031     |
| 20 n-Pentene                                     | C <sub>5</sub> H <sub>10</sub> | 70.128      | 0.1852*            | 5.400*            | 2.4190*                  | 3836                                                                       | 3586   | 20,712  | 19,363           | 7.5    | 28.232                                                               | 35.732 | 5.0  | 5.0              | 28.232 | 3.422  | 11.385                                            | 14.807 | 3,138  | 1.285            | 11.385  | 0.037     |
| Aromatic series C <sub>n</sub> H <sub>2n-6</sub> | 32533                          | 357023      |                    |                   |                          | 053337                                                                     |        |         |                  | 1200-0 |                                                                      |        |      |                  |        | 121222 |                                                   |        |        |                  |         |           |
| 21 Benzene                                       | CeHe                           | 78.107      | 0.2060*            | 4.852*            | 2.6920*                  | 3751                                                                       | 3601   | 18,210  | 17,480           | 7.5    | 28.232                                                               | 35.732 | 6.0  | 3.0              | 28.232 | 3.073  | 10.224                                            | 13.297 | 3.381  | 0.692            | 10.224  | 0.12      |
| 22 Toluene                                       | C <sub>2</sub> H <sub>e</sub>  | 92.132      | 0.2431*            | 4.113°            | 3.1760*                  | 4484                                                                       | 4284   | 18,440  | 17,620           | 9.0    | 33.878                                                               | 42.878 | 7.0  | 4.0              | 33.878 | 3.126  | 10.401                                            | 13.527 | 3.344  | 0.782            | 10.401  | 0.21      |
| 23 Xylone                                        | C <sub>e</sub> H <sub>10</sub> | 106.158     | 0.2803*            | 3.567*            | 3.6618*                  | 5230                                                                       | 4980   | 18,650  | 17,760           | .10.5  | 39.524                                                               | 50.024 | 8.0  | 5.0              | 39.524 | 3.165  | 10.530                                            | 13.695 | 3.317  | 0.849            | 10.530  | 0.36      |
| Miscellaneous gases                              |                                |             |                    |                   |                          | 1                                                                          |        |         |                  |        |                                                                      |        |      |                  |        |        |                                                   |        |        |                  |         |           |
| 24 Acetylene                                     | CzHz                           | 26.036      | 0.06971            | 14.344            | 0.9107                   | 1499                                                                       | 144B   | 21,500  | 20,776           | 2.5    | 9.411                                                                | 11.911 | 2.0  | 1.0              | 9.411  | 3.073  | 10.224                                            | 13.297 | 3.381  | 0.692            | 10.224  | 0.16      |
| 25 Naphthalene                                   | CioHa                          | 128.162     | 0.3384*            | 2.955*            | 4.4208*                  | 58541                                                                      | 5654*  | 17,298  | 16,708           | 12.0   | 45.170                                                               | 57.170 | 10.0 | 4.0              | 45,170 | 2.996  | 9.968                                             | 12,964 | 3.434  | 0.562            | 9.968   | _1        |
| 26 Methyl alcohol                                | CH,OH                          | 32.041      | 0.0846*            | 11.820*           | 1.1052*                  | 867.9                                                                      | 768.0  | 10.259  | 9.078            | 1.5    | 5.646                                                                | 7.146  | 1.0  | 2.0              | 5.646  | 1.49R  | 4.984                                             | 6.482  | 1.374  | 1.125            | 4 984   | 0.027     |
| 27 Ethyl alcohol                                 | C.H.OH                         | 46.067      | 0.1216*            | 8.2219            | 1.5890*                  | 1600.3                                                                     | 1450.5 | 13.161  | 11.929           | 30     | 11 293                                                               | 14 293 | 2.0  | 30               | 11 293 | 2 084  | 6.934                                             | 9.018  | 1 922  | 1.170            | 6.934   | 0.030     |
| 28 Ammonia                                       | NH,                            | 17.031      | 0.0456*            | 21.914            | 0.5961*                  | 441.1                                                                      | 365.1  | 9,668   | 8,001            | 0.75   | 2.823                                                                | 3.573  | -    | 1.5              | 3.323  | 1.409  | 4.688                                             | 6.097  | -      | 1.587            | 5.511   | 0.088     |
| 29 Sulfur                                        | s                              | 32.05       | _                  |                   | _                        | -                                                                          | -      | 3 983   | 3 983            | -      | _                                                                    | _      | _    | _                | _      | 0.998  | 3 287                                             | 4 295  | 50z    |                  | 3 787   | 0.071     |
|                                                  | 1.00                           |             | 34035940           | 25022             | and the second           | 1223                                                                       | -32    | 01000   | 01000            | 100    | - 61                                                                 | 12     | 50,  | 2                |        | 0.000  | 4.6.67                                            | 4.693  | 502    | 33               | 5.20/   | 0.071     |
| 30 Hydrogen sullide                              | Has                            | 34.076      | 0.09109*           | 10.979*           | 1.1898*                  | 647                                                                        | 596    | 7,100   | 6,545            | 1.5    | 5.646                                                                | 7.146  | 1.0  | 1.0              | 5.646  | 1.409  | 4.688                                             | 6.097  | 1.880  | 0.529            | 4.688   | 0.30      |
| 31 Sulfur dioxide                                | SO <sub>2</sub>                | 64.06       | 0.1733             | 5.770             | 2.264                    | -                                                                          | -      | -       | -                | -      | -                                                                    | -      | -    | -                | -      | -      | -                                                 | -      | -      | -                | - 1     | -         |
| 32 Water vapor                                   | H <sub>2</sub> O               | 18.016      | 0.04758*           | 21.017*           | 0.6215*                  |                                                                            | -      |         | -                | -      | -                                                                    | -      | -    | -                |        | -      | -                                                 | -      | _      | _                | -       | -         |
| 33 Air                                           | -                              | 28.9        | 0.07655            | 13.063            | 1.0000                   | -                                                                          | -      | -       | -                | -      | -                                                                    | -      | -    | -                | -      |        | -                                                 | -      |        | -                | -       | -         |

All gas volumes corrected to 60F and 30 in. Hg dry. For gases saturated with water at 60F, 1.73% of the Btu value must be deducted.

\* Calculated from atomic weights given in "Journal of the American Chemical Society", February 1937.

<sup>b</sup> Densities calculated from values given in grams per liter at 0C and 760 mm in the International Critical Tables allowing for the known deviations from the gas laws. Where the coefficient of expansion was not available, the assumed value was taken as 0.0037 per 'C. Compare this with 0.003652 which is the coefficient for a perfect gas. Where no densities were available the volume of the mol was taken as 22.4115 liters.

Converted to mean Btu per Ib (1/180 of the heat per Ib of water from 32F to 212F) from data by Frederick D. Rossini, National Bureau of Standards, letter of April 10, 1937, except as noted. <sup>4</sup> Deduction from gross to net heating value determined by deducting 18,919 Btu per pound mol of water in the products of combustion. Osborne, Stimson, and Ginnings, "Mechanical Engineering", p. 163, March 1935, and Osborne, Stimson, and Fiock, National Bureau of Standards Research Paper 209.

Denotes that either the density or the coefficient of expansion has been assumed. Some of the materials cannot exist as gases at 60F and 30 in. Hg pressure, in which case the values are theoretical ones given for ease of calculation of gas problems. Under the actual concentrations in which these materials are present their partial pressure is low enough to keep them as gases.

<sup>1</sup> From Third Edition of "Combustion."

National Bureau of Standards, RP 1141.

Reprinted from "Fuel Flue Gases", 1941 Edition, courtesy of American Gas Association.

Source: B&W Steam Book



## **Example Heat and Mass Balance**

| HEAT AND MASS BALANO         | CE FOR THI   | ERMAL PRO     |            | Major parameters |            |                             |             |         |  |
|------------------------------|--------------|---------------|------------|------------------|------------|-----------------------------|-------------|---------|--|
| By: Tom McGowan, TMTS        | S Associates | , Inc.        |            |                  |            | entered in thi              | s line for  |         |  |
| Filename: HTMSFMST           |              |               |            |                  |            | cincered in thi             |             |         |  |
| Date:                        | 16-Apr-05    |               |            |                  |            | evenes air nri              | mary and    |         |  |
| For:                         |              |               |            |                  |            | excess an, ph               | inary and   |         |  |
| Evenes air (XCS) includes    |              |               |            |                  |            | ofter bu                    | rnor        |         |  |
| All flow values (mass or vol | lume) are ne | ar hour basis |            |                  |            | alter Du                    | IIIEI       |         |  |
| No POHC used for sizing m    | naximum SC   | C burner can  | acity      |                  |            | to 100 10 0 100             |             |         |  |
| Propane gas is auxiliary fue | el. baghouse | after SCC fo  | or APC.    |                  |            | tempera                     | lures       |         |  |
|                              | - , <b>g</b> |               |            |                  |            | 7                           |             |         |  |
|                              |              |               |            |                  |            |                             | Primary     |         |  |
| Major Parameters:            |              |               |            |                  | Quench/Bag | Solids Chrg, / Feed         | Radiatn We  | t Wgt   |  |
| Primary Burner XCS           | SCC XCS      | POHC XCS      | Prim. Temp | SCC Temp         | House Temp | lb⊁hr ∕ Moisture            | Loss F      | OHC     |  |
| 50%                          | 25%          | 90%           | 1600       | 2000             | 400        | 0         40000∕     10.00% | 5.00% 7     | .00%    |  |
|                              |              | Ash temp      | -150       | F over gas ten   | np         | SCC Rad L                   | 2.50%       |         |  |
| Stage 1, Primary Kiln Burne  | er           |               |            |                  |            |                             | _           | Fuel    |  |
|                              |              | HHV           | LHV        | Sensible         | Flame      | )                           | Ba          | lance   |  |
|                              | lb/hr        | MMBtuh        | MMBtuh     | Heat MMBtuh      | Temp       | )                           | 9           | 6 Diff. |  |
|                              | 10044        | 17.22         | 15.82      |                  |            |                             | -(          | 0.09%   |  |
|                              | 10044        | 17.00         | 15.92      | 15.92            | 3021       |                             |             |         |  |
| Total                        | 19044        | 17.22         | 15.62      | 15.62            | 3021       |                             | 1           |         |  |
| Stage 2. Solids Injected in  | Primary Furr | nace          |            |                  |            | <sup>2</sup> Calculation    | s carry dat | ta      |  |
|                              | ,, ,         | HHV           | LHV        | Sensible         |            |                             | 5           |         |  |
| Item                         | lb/hr        | MMBtuh        | MMBtuh     | Heat MMBtuh      |            | from stage                  | to stage fo | )r      |  |
|                              |              |               |            |                  |            |                             |             |         |  |
| Solids                       | 33200        |               |            | 13.84            |            | heat an                     | d mass      |         |  |
| Moisture                     | 4000         |               | -4.24      | 3.08             |            | neut un                     |             |         |  |
| POHC                         | 2800         | 56.00         | 50.40      | 1.21             |            |                             |             |         |  |
| Air                          | 76342        |               |            | 33.08            |            |                             |             |         |  |
| Total                        | 116342       | 56.00         | 46.16      | 51.21            |            |                             |             |         |  |

# **Example Heat and Mass Balance**





#### **Temperature vs. Air to Fuel Ratio**



#### **Adiabatic Flame Temperature**

(at zero % heat loss)

 $Q = M \times C_p \times temperature difference, or$ Temperature difference = Q / (M X C<sub>p</sub>)

Where Q = Btu

- M = Mass, Ib of combustion products
- C<sub>p</sub> = Specific heat of combustion products, Btu/lb-F

For methane at 100% XS Air, AFT ~ 2200F/1200C

All graphs are scaled to permit interpolation using a millimeter scale.

All hot air curves are based on 10% excess air. All excess air curves are based on 60 F (16 C) combustion air.



Reference: North American, "Percent Available Heat With Preheated Air", Handbook Supplement 155a, Feb. 2001

Used with permission of NAMfg

**TMTS** 

**Products and Byproducts** of Combustion

- The two fundamental products of the reaction are CO<sub>2</sub> and H<sub>2</sub>O
- N<sub>2</sub>, and O<sub>2</sub> vary with excess air level

• Other products may include CO, VOCs/HAPs, Semi Vols, SO<sub>2</sub>, SO<sub>3</sub>, NOx, HCI, HF, HBr and others, depending on the composition of the fuel and level of oxygen **Retention Time in Afterburners used to destroy CO and VOCs/HAPs/Semi Vol** 

 Retention Time (RT): Length of time in the high temperature zone to complete the combustion reactions

> RT = <u>Volume of combustion chamber</u> Actual Flow rate of combustion gases

 Use longer retention time for more difficult to burn fuels

# Learning from a Candle...

Except for carbon and metals, solids turn into gases before they burn! Remember the 3 T's!



# **Quenching a Flame**



Soot on knife blade is thousands of tiny soot particles that would have burned in hot flame – if they had enough time and temperature!

# **Pyrophoric Materials**

The heat from a bit of friction on the scratch block is enough to reach AIT, the autoignition temperature. The sulfur and phosphorous mixture is pyrophoric and burns easily.





# Limits of Flammability vs. Inert Percent in Air



#### **INERT**, volume percent

# Limits of Flammability vs. Temperature



Hexane LEL =1.1%, UEL = 7.5% at 60F; Flash Point =  $-7^{\circ}F$  AIT at Stoic. = 437°F

Ref: Graph adapted from US Bureau of Mines Bulletin 627; numerical data from NFPA 325M

# Air Pollutants from Combustion and Control Strategy

- CO better mixing, higher temp, catalyst
- NOx low NOx burners, SCR, SNCR, FGR, Low O2, water injection, lower fuel bound N2, etc.
- VOCs oxidizers, catalysts, carbon, zeolites
- Acid gas e.g., HCl -- wet or dry scrubber
- Dioxins >1600F/870C; fast quench, carbon, etc.
- PM Baghouse, ESPs
- Metals Baghouse, ESPs; for Hg, carbon or IWS
- CO2 Greenhouse gas use more efficient process

#### NOx Control Technologies Post Combustion Flue Gas Treatment





#### NOx Control Technologies Post Combustion Flue Gas Treatment



Oxyfuel burners

TNPTS

# **Some Combustion References**

- North American Combustion Handbook, 2 volumes: http://www.namfg.com/comb-handbook/gra49.pdf
- B&W Steam Book http://www.babcock.com/library/steam.html
- Biomass and Alternate Fuel Systems: An Engineering and Economic Guide http://tinyurl.com/Amazon-biomass-book
- Papers and Literature on TMTS website www.tmtsassociates.com