
CEP  September 2021  aiche.org/cep  47

Back to Basics

Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

Jacob Albrecht ■ Sage Bionetworks

The programming language for everybody
is for chemical engineers, too.

Step Into the Digital
Age with Python

Chemical engineers work on a diverse range of prob-
lems, but address them using similar approaches. For
example, one commonality is the way in which we

complete routine tasks and office work (e.g., manipulating
remote data) using networked computers. Good engineers
have access to a wide variety of tools, and they have the
skills to know when and how to use them. As the work
changes, we need to update our toolbox and become more
collaborative. If you are looking to take your work to the
next level, or just want to try something new, consider add-
ing Python to your toolbox.
	 The Python programming language is free, is considered
easy to learn, and offers flexibility for nearly any digital
task. It is maintained by the nonprofit Python Software
Foundation. Python was first released in 1991 as an easy-to-
use programming language that would have broad appeal.
The language is 30 years old (predating Excel’s Visual
Basic for Applications), but Python has seen incredible
growth in just the past decade, driven by some key applica-
tion areas, such as data science and machine learning.
	 A multitude of options are available to meet the techni-
cal needs of data analysis. Although spreadsheets and com-
mercial software work well for most needs, situations arise
that require a bespoke solution. Programming languages
allow unlimited flexibility and are thus well suited to solve
unique problems. Whereas other tools focus on data with
logic behind it, programming solutions focus on the logic

and operate on data in the background.
	 This article describes the many ways Python can be used
for chemical engineering work in the digital age. It is not a
tutorial for learning how to program in Python — abundant
resources are available online, both free and paid, to learn
the language for yourself. Rather, the goal of this article is
to present Python’s role in the modern chemical engineer’s
toolbox. To highlight some of the reasons why you should
consider Python as your next growth area, let’s start with the
most compelling.

Python is already widely used
by chemical engineers
	 Python has amassed a large following since its release.
It is widely used by major technology companies across
many scientific disciplines, and it benefits from the con-
tributions of researchers. Python is considered to be an
easy-to-learn programming language, and it is among
the first programming languages that many students are
taught today. Because more and more students are learn-
ing Python, the next generation of engineers will likely
be interested in applying it to their professional work.
For those out of school, Python is a great programming
language to learn independently, with abundant online
resources. This time spent learning the language is a smart
investment for your career. For example, in the Presiden-
tial Lecture given at the 2019 AIChE Annual Meeting

48  aiche.org/cep  September 2021  CEP

Back to Basics

Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

(Nov. 10–15, 2019, Orlando, FL), Matt Sigelman, CEO of
Burning Glass Technologies, mentioned Python specifically
as a skill that adds a premium to a worker’s expected salary.
	 It is difficult to survey the programming tools that engi-
neers use, but one resource is public code repositories hosted
on GitHub — a widely used cloud-based service that helps
developers store and manage their code, as well as track and
control changes to their code. By scanning GitHub for users
who self-describe as chemical engineers, it is possible to
analyze what programming languages they share publicly.
Figure 1 shows the proportion of more than 1,500 chemical
engineers who have shared different types of files in over
16,000 repositories. Python code is the most popular, beating
out web technologies such as HTML, CSS, and JavaScript.
	 Also included in the analysis in Figure 1 are Jupyter
notebooks, a rapidly growing open-source web application.
Jupyter notebooks from Project Jupyter are web-enabled
documents that support dozens of programming languages,
with Python being a popular choice. These notebooks are
useful for sharing analyses because they allow for a series
of “cells” containing formatted text, executable code, and
results to exist in one document that can be followed by
anyone with a web browser. Behind the scenes, Python runs
the code cells and updates the results. Notebooks can be run
on your own computer or you can access them on a separate
web server.
	 GitHub trends also reveal how the popularity of these
tools has grown over time (Figure 2). The effect of the
COVID-19 pandemic is striking: beginning in March 2020,
the rate of project creation jumps by about 40% for Python
and doubles for Jupyter Notebooks. At the same time,
languages like C++ remained flat. This suggests that many
engineers took the opportunity to build their Python skills
during the lockdown.
	 The growing popularity of Python among chemical
engineers can be attributed to the rapidly maturing capabili-

ties external packages are adding to the language. Users are
voting with their time and attention on the best way to do
work. They have clearly concluded that Python is a flexible
tool that meets the demands of chemical engineering work.

Python adapts to our work
	 The core capabilities of Python are managed by non
profits and government laboratories, while a mature
ecosystem of packages is available that offers additional
capabilities. Python’s greatest power is in its flexibility, and
without packages, it would not have its breadth of applica-
tions. Table 1 highlights some of the most popular enabling
packages engineers use to collect and analyze data, perform
calculations, and automate tasks.
	 In addition to these popular packages, Python has an
enormous ecosystem of packages; currently, there are more
than 300,000 packages on the Python Package Index, and
this number continues to grow (1). Because it is easy to
share packages, many authors will share their code as part of
publishing new work, which allows anyone to reproduce the
work. It is easy and free to install most packages using the
pip and/or conda package managers. In considering some
common patterns that occur with computer-aided work, four
themes are explored: data handling, connecting to remote
data, reproducible work, and automating software.

Data cleaning and analysis
	 As technology continues to improve, facilities are
generating an increasing amount of data. This data is now
typically stored on public and private networks, rather than a
computer we can physically access. Yet, stored data is often
organized by how it was collected, not how it will be used;
tidy data that is ready for analysis is rare.
	 Some data is available in organized databases, but often
information is only available in tables inside reports, written
in Microsoft Word or PDF format. Manual work to extract

Language

Py
th

on

H
TM

L

C
SS

Ja
va

Sc
rip

t

Ju
py

te
r N

ot
eb

oo
k

Sh
el

l

M
ak

ef
ile

C
+

+ C

Ru
by

Ja
va

M
AT

LA
B

Ba
tc

hf
ile

D
oc

ke
rf

ile Te
X

0

10

20

30

40

50

C
he

m
ic

al
 E

ng
in

ee
rin

g
U

se
rs

, %

Year

0

20

40

60

80

100

120

140

N
ew

 P
ro

je
ct

s
Ea

ch
 M

on
th

2016 2017 2018 2019 2020 2021

C++
Jupyter Notebook
Python

p Figure 1. Python is the most popular programming language or application
used by chemical engineers on GitHub.

p Figure 2. The creation of Python and Jupyter Notebook project repositories by
chemical engineers in GitHub greatly increased in March 2020.

CEP  September 2021  aiche.org/cep  49
Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

and process data is appropriate for
dozens to hundreds of datapoints, but
becomes time consuming and error-
prone for larger datasets. This data
“wrangling” is a tedious task that
Python can expedite. Python can read
these file formats to extract the data,
and scripts can be created to perform
the same actions on any number of
files over time. Utilizing data frames
from the pandas package offers
many convenient capabilities for work-
ing with data organized in a tabular
spreadsheet format.
	 As a quick example, suppose that
a series of experiments is conducted
with separate result files generated for
each of the experimental conditions.
The conditions are stored separately
from the data, and files are named for
each condition. Figure 3 illustrates the

p Figure 3. Python allows data spread across multiple files to be read, merged, and visualized. (a) This diagram illustrates how a collection of experimental results can be
merged with experimental conditions and plotted. (b) The actual code cells to perform these steps is shown here in a Jupyter notebook.

(a) Data Collection Scheme

experiment 1.xlsx

experiment 2.xlsx

experiment 3.xlsx

experiment 4.xlsx

experiment info.xlsx

1. Collect
1. Collect

2. Merge

2. Merge

3. Plot
3. Plot

(b) Jupyter Notebook

Table 1. Python has a mature ecosystem of packages
that are commonly used for engineering tasks.

Name Purpose Homepage

numpy Arrays and basic math functions https://numpy.org

scipy Scientific and statistical functions https://scipy.org

pandas Tabular data https://pandas.pydata.org

matplotlib Plotting https://matplotlib.org

selenium Automating web browsers https://selenium.dev

pyautogui,
pywinauto

Automating operating system
graphical user interfaces (GUIs)

https://github.com/asweigart/
pyautogui
https://github.com/pywinauto/
pywinauto

sympy Symbolic math https://sympy.org

jupyter Web notebooks https://jupyter.org

scikit-
learn

Machine learning https://scikit-learn.org

flask,
django

Web frameworks https://palletsprojects.com/p/flask
https://djangoproject.com

tensorflow,
pytorch,
keras

Deep neural networks https://tensorflow.org
https://pytorch.org
https://keras.io

50  aiche.org/cep  September 2021  CEP

Back to Basics

Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

process of collecting and merging the files, along with the
actual code in a Jupyter Notebook. With Python, the files
can be read and combined with the experimental condi-
tions to create a table containing all of the data. A few more
lines of code generate plots of the data. Now we can easily
inspect the results and draw conclusions. In Figure 3, we can
observe that the concentration factor has the biggest impact
on how the response changes over time.
	 With only a few lines of Python code, we are able to
merge the data in five files and create a useful plot. Best of
all, doing this with Python code allows you to rerun and
extend this analysis easily, and include any number of data
files with the same format.

Networked working
	 Locally available data is convenient, but data shared
over a network is becoming the norm. As more and more
information is shared freely online, a resourceful person
can ask and answer many questions quickly with Python-
enabled processes. Commercial data is stored in databases
or unstructured data buckets, and is easy to access with
packages like sqlite3 or boto3. There is abundant
information available through web interfaces, and in case
these interfaces are unavailable, Python makes it possible to
automatically extract the raw content from webpages.
	 As an example of working with remote data, the U.S.
National Library of Medicine recently shut down TOX-
MAP, a useful resource to view geographical data from the
U.S. Environmental Protection Agency’s (EPA’s) Toxic
Release Inventory (TRI), among other sources. The raw
data is still accessible through the EPA’s TRI web applica-
tion programming interface (API), allowing for a custom
analysis. Figure 4 is a screenshot of a Jupyter notebook that
can download 2019 TRI data, filter it to view the quantity of
waste disposed by incineration, then plot the quantities for
the contiguous U.S.
	 The notebook has markdown cells, which add text and
format the section headings, as well as four code cells. The
first code cell loads numpy, pandas, a custom interface
to the EPA’s API, and packages for working with geospatial
data (i.e., geopandas and geoplot). The second cell
queries the EPA database for the year 2019. The third cell
filters the data for incineration disposal methods, then groups
the data by facility and sums the total quantity that was
incinerated at each location, keeping quantities greater than
20 m.t. A new column for the log of the quantity is created
and added to the data frame. The fourth cell loads a map of
the contiguous U.S., then plots the TRI data by latitude and
longitude on the map, with the size and color of the marker
determined by the log quantity incinerated.
	 Python makes these types of explorations simple, with
endless options for modifying the analysis. When data can

be accessed openly, using a commonly available language
like Python allows for complete transparency and reproduc-
ibility. For complex work, taking the steps to ensure repro-
ducibility is the fastest way for others to trust the veracity
of the results.

Reproducible work
	 Reproducibility is an important consideration for any-
one’s work. It is even more important if you consider that
collaboration occurs not only with your contemporaries, but
also with your future self. It can save you time, as valuable
work is often followed up with requests to repeat it. For your
stakeholders, it is important that the analysis behind a deci-
sion can withstand scrutiny. For your collaborators, being
able to share the code behind an analysis greatly accelerates
the time to learn and maintain methodologies.
	 Consider the analysis of chemical engineers on GitHub
presented in Figures 1 and 2. Developing those figures
required accessing the public profiles of GitHub users, ana-
lyzing their code repositories, summarizing the data, and
then plotting the results. The code to accomplish this task
was created initially in 2019 in less than 40 lines of Python.
I was able to save time by running the code again in 2021,
reusing the original effort. The code and instructions are
also provided as a Jupyter notebook in the accompany-
ing repository (2), so that anyone can inspect and recreate
the analysis for themselves. Keeping the code in a public
repository has other advantages; in this case, the original
analysis was included in the 2020 GitHub Arctic Code
Vault project, ensuring that it will be available for at least
the next millennium.

Automation
	 Not every activity can (or should) be performed in
Python; chemical engineers also rely on several special-
purpose software tools. Once software is configured and is
used for a task, the work is rarely done after the first use. If
the results prove useful, the same process can be expected
to be rerun in the future. While the work is done outside of
Python, the activity can be automated with Python. Script-
ing interactions with software saves time and tedium by
automating repetitive work. In general, if you can type, see,
or click something on your computer display, an automation
package can do the same. Python can send mouse clicks
and keystrokes to your computer operating system using the
pyautogui or pywinauto packages.
	 When interacting with specific programs, it is typically
faster and more reliable to connect to the program’s API if
possible. Because Python has a software license that permits
integration with closed-source projects, many commercial
software include integration with Python (look for it in the
software documentation).

CEP  September 2021  aiche.org/cep  51
Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

p Figure 4. This example Jupyter notebook can access and visualize waste disposal data from the U.S. Environmental Protection Agency’s (EPA’s)
Toxic Release Inventory (TRI).

Article continues on next page

52  aiche.org/cep  September 2021  CEP

Back to Basics

Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

	 As a somewhat trivial example, the selenium package
is a great way to record macros, then control web browsers
directly. The code example in Figure 5 goes to aiche.org
and searches the site for Python. In these six lines, Python
imports the selenium package, opens a new Firefox
window, navigates to aiche.org, clicks the new search but-
ton, types “Python,” then clicks the submit search button. If
you find yourself performing routine tasks, like accessing a
website, a Python script run as a scheduled task can save tre-
mendous amounts of time. Python has a reputation as a glue
language that can connect different applications to facilitate
any sort of workflow.

Python has technical computing capabilities
	 Python wasn’t originally designed for technical comput-
ing; the built-in capabilities for mathematical functions are
very limited. Thanks to its user community, and nonprofit
organizations like NumFOCUS (https://numfocus.org), there
is a large ecosystem consisting of hundreds of thousands
of scientific and engineering packages that can add func-
tionality. In Table 1, the packages numpy and scipy add
fundamental capabilities for scientific calculations in Python.
Other packages called scikits add functionality to scipy
for domains like machine learning or image processing. For
plotting, matplotlib is a standard plotting package that
can generate publication-quality plots. The seaborn pack-
age builds on top of matplotlib and adds functionality
for exploratory data visualization and statistical plots.
	 When using Python to solve technical problems, you
may be looking for capabilities from classic numerical meth-
ods, or you may be interested in applying a promising new
approach (e.g., machine learning) to problem-solving. For
either scenario, Python is quite capable.

Classic numerical methods
	 Timeless numerical methods capabilities used by chemi-
cal engineers include linear algebra, ordinary differential
equation (ODE) solvers, and least squares regression. In
Python, these capabilities have been steadily added over
the years and are now very mature and well-documented,

contained in the numpy and scipy packages. As a bonus,
Python’s symbolic mathematics package sympy offers
excellent capabilities for symbolic algebra and calculus.
Refs. 3 and 4 present ten classic chemical engineering
problems that employ a variety of numerical methods that
can be used to benchmark different software packages. The
companion code repository on GitHub has Python solutions
to these problems, and can be run at the link provided in the
literature cited (2).

Modern machine learning and simulation
	 The flexibility of Python facilitates the sharing of new
algorithms as they are developed. Python can be connected
to more efficient code written in C, FORTRAN, or Julia to
provide high performance from simple Python functions.
For general machine learning, scikit-learn is a collec-
tion of hundreds of algorithms for classification, regression,
clustering, dimensionality reduction, and more. All of
these algorithms can be used with a common syntax,
facilitating experimentation with different processing and
modeling pipelines.
	 The rapid growth in the application of deep neural
networks has been facilitated by sharing and benchmarking
Python implementations. For example, tensorflow and
pytorch are currently two of the most popular packages
for deep neural networks. Once powerful foundational
frameworks are released, the Python community gets to
work to develop more and more user-friendly ways to access
the capabilities. For example, the keras package can make
deep learning more accessible.
	 Many packages have been recently released that offer
optimization and simulation capabilities. For example,
Pyomo (www.pyomo.org) can define optimization problems
and offers flexibility by allowing for different types of input
data and available solver algorithms (5, 6). The Atomic
Simulation Environment (7, 8) works in a similar way by
flexibly setting up, running, and analyzing atomistic simula-
tions with a large number of third-party calculators. This
type of modularity is one advantage of meta packages in
Python, allowing for easy integration of new capabilities as
they are created.

Next steps
	 The aim of this article is to raise awareness of what the
Python programming language can do for chemical engi-
neers. Python is capable enough for professional program-
mers yet simple enough to be taught as an entry-level
language. If you are looking to upgrade your skills, consider
adding Python to your toolbox. It is free to use, free to learn,
and can be used for nearly any digital task.
	 The next steps, should you choose to take them, include
getting access to your own Python. One of the challenges

p Figure 5. These six lines of code open a web browser and automatically search
aiche.org for the word “Python.”

The rapid growth in the application of deep
neural networks has been facilitated by sharing

and benchmarking Python implementations.

CEP  September 2021  aiche.org/cep  53
Copyright © 2021 American Institute of Chemical Engineers (AIChE).
Not for distribution without prior written permission.

to getting started is that Python can be used in a dauntingly
large variety of formats, either from the OS command line,
through a Jupyter notebook, or development environments
like PyCharm, IDLE, Spyder, or Visual Studio Code. Iden-
tifying resources (people or publications) to stay abreast of
the latest capabilities is important; even the mature pack-
ages mentioned here may become deprecated in the future.
To get started as quickly as possible, Google Colaboratory
(9) is a fast and free way to work with notebooks online.
For individuals looking to get started on their own com-
puter, the Anaconda distribution from anaconda.com is a
good place to begin.
	 The last piece of advice for learning Python is to be
persistent; failures and errors are a part of working with
programming languages. Stackoverflow.com is a very good
resource for finding common questions and getting help.
Being motivated is important to get started, but regularly
using Python is best to build skills. I hope you find that
Python lowers the barriers to what is possible with digital
resources, making your own knowledge and expertise even
more valuable.

JACOB ALBRECHT, PhD, is currently Director of Benchmarking and
Data Challenges at Sage Bionetworks, focused on enabling the
evaluation of biomedical tools and algorithms. He received a PhD
from the Massachusetts Institute of Technology (MIT) and a BS from
the Univ. of Nebraska-Lincoln, both in chemical engineering. Previ-
ously, he was an associate director in pharmaceutical development
at Bristol Myers Squibb (BMS). He has championed the adoption
of modern approaches to data science and machine learning both
within BMS and through pharmaceutical industry consortia.

Literature Cited
1.	 Python Software Foundation, “Python Package Index (PyPI),”

https://pypi.org (accessed Aug. 3, 2021).
2.	 Albrecht, J., “Python 4ChEs Code Repository,” https://github.

com/chepyle/Python4ChEs/tree/CEP2021 (accessed Aug. 3,
2021).

3.	 Cutlip, M. B., et al., “The Use of Mathematical Software
Packages in Chemical Engineering,” Workshop Material from
Session 12, Chemical Engineering Summer School, Snowbird,
UT (Aug. 1997).

4.	 Albrecht, J., “Executable Python Solutions to Chemical
Engineering Problems,” https://mybinder.org/v2/gh/chepyle/
Python4ChEs/master?urlpath=lab (accessed Aug. 3, 2021).

5.	 Hart, W. E., et al., “Pyomo — Optimization Modeling in
Python,” 2nd Ed., Springer, New York, NY (2017).

6.	 Hart, W. E., et al., “Pyomo: Modeling and Solving Mathemati-
cal Programs in Python.” Mathematical Programming Computa-
tion, 3 (3), pp. 219–260 (2011).

7.	 Larsen, A. H., et al., “The Atomic Simulation Environment —
A Python Library for Working With Atoms,” Journal of Physics:
Condensed Matter, 29, #273002 (2017).

8.	 “Atomic Simulation Environment (ASE),” https://wiki.fysik.dtu.
dk/ase (accessed Aug. 3, 2021).

9. 	 Google Colaboratory, “Welcome to Colaboratory,” https://colab.
research.google.com (accessed Aug. 3, 2021).

CEP

© 2021 AIChE 6120_21 • 04.21

bio, process
or chemical
engineers?

LOOKING
TO HIRE

Start your search at
careerengineer.aiche.org

