
CEP June 2017 www.aiche.org/cep 39

Computational Methods

Most Excel users, including chemical engineers,
have not ventured behind the curtain to leverage
the Visual Basic for Applications (VBA) program-

ming language that accompanies the spreadsheet program.
Several reasons for this include: many chemical engineers
have picked up the use of Excel on the fly; the availability
and utility of VBA is not obvious, and its use is not required;
and many chemical engineers have a disdain for program-
ming languages, often instilled by an unpleasant experience
in a computer programming course during college.
 Because integrating VBA into spreadsheet problem-
solving can bring many benefits in terms of efficiency,
power, and reliability, the purpose of this article is to break
the ice. Examples of a few elementary applications of VBA
are presented. Using similar concepts in your spreadsheets
can help make you more productive for little effort. This
article builds on the concepts presented in the August 2016
CEP article “Use Spreadsheets for ChE Problem-Solving.”

Evolution of spreadsheet programming
 Spreadsheet software was developed on personal com-
puters, such as VisiCalc on the Apple IIe and Lotus 1-2-3
on the IBM PC, well before the advent of the graphical user
interface and the mouse pointing device. The menus in the
spreadsheet programs were operated using keystrokes. For
example, in Lotus 1-2-3, the / key activated the menu, the
arrow keys navigated the menu options, and the Enter key
made a selection (pressing the first letter of a menu option,
e.g., D for Data, was a quicker way to also make a selec-
tion). Submenus could be operated in the same way. We are
now accustomed to using the mouse to make menu selec-
tions, although the keyboard (using the Alt key) can still be
used to navigate the Excel interface. If memorized, the key
sequence can be much faster than using the mouse.

Early in spreadsheet program development, the programs
incorporated a “macro” feature that allowed the user to
enter a series of keystrokes in a cell or a series of contigu-
ous cells and identify it with a shortcut key combination,
which enhanced efficiency for common menu sequences.
Numerous competitors entered the spreadsheet market in the
late 1980s and early ’90s with macro language features that
enabled the use of a limited programming structure, such as
decisional branches and count-controlled loops. These macro
languages evolved to a fairly complex level (e.g., Excel’s
Macro Language Version 4.0) but were never designed from
the ground up as programming languages. They also allowed
the recording of macro programs by following, and later
mimicking, the sequence of keystrokes that drive the menus.

Microsoft overhauled Excel’s programming capabilities

Excel includes a programming language that can
improve your productivity, as well as the reliability of

your spreadsheets. Simple programs in
Visual Basic for Applications (VBA) can have a big

impact on your work for little effort.

David E. Clough
Univ. of Colorado

Improve Your
Spreadsheet Productivity

with VBA

p Figure 1. The Visual Basic Editor opens as a separate window from your
spreadsheet, making the two environments seem like different worlds that
pass information back and forth.

Excel
Spreadsheet World

VBA
VBA World

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

40 www.aiche.org/cep June 2017 CEP

Computational Methods

in 1993 with the introduction of VBA in Excel Version 5.0.
VBA is an object-oriented programming language that is
fully featured and is used across the Microsoft Office plat-
form, including versions in Access, Word, and PowerPoint.
With the launch of VBA, the programming capabilities
became less integrated with Excel and, in essence, live in
their own “world” (Figure 1).
 A fully featured, somewhat independent, programming
language like VBA has major benefits but also has some
drawbacks. When recording macros for a series of tasks,
VBA observes what the user is doing on the spreadsheet and
interprets it as a VBA program. Often, the interpretation is
not exactly what the user intended and must be fixed. There
are also difficulties associated with the exchange of informa-
tion (e.g., data) between the spreadsheet and VBA environ-
ments. And, hundreds of useful built-in functions in Excel

are not directly available in VBA, which has a limited set of
functions.

Despite limitations, chemical engineers can use VBA to:
• record macros. Macros that automate repetitive tasks

offer the greatest opportunity to improve your efficiency
when using spreadsheets.

• develop custom functions. Custom user-defined func-
tions, especially for commonly used, formula-based engi-
neering calculations, help streamline spreadsheet operation.

• create VBA programs. Stand-alone VBA programs that
carry out more-complex calculations involving information
contained in the spreadsheet are powerful tools.

• make custom interfaces. Custom user applications may
include user forms and interfaces with other software, such
as data acquisition tools and process simulators.
 This article focuses on macros and custom functions.
Chemical engineers who use Excel for day-to-day problem-
solving can benefit greatly by leveraging these two simple
tools. The latter two functions are introduced in this article
but require more in-depth coverage. (Two courses in the
AIChE Academy, available in both online and in-person
formats, address creating VBA programs and custom
interfaces.)

The Excel-VBA interface:
Moving between the worlds
 VBA programs are developed, edited, and managed
in the Visual Basic Editor (VBE) environment. There are
numerous ways to move back and forth between the Excel
spreadsheet and the VBE. (This article will cover the meth-
ods suitable for working with Microsoft Office 2016, and the
associated version of Excel, for the Microsoft Windows 10
operating system. Earlier versions on Windows-based
systems do not vary too much.) Keying Alt-F11 is the easi-
est way to open the VBE. Alternatively, you can select the
Visual Basic icon from the Code group on the Developer tab
of the Ribbon. (If the Developer tab does not appear on your
Ribbon, activate it via File, Options, Customize Ribbon, and
check the box next to Developer.) Once the VBE is acti-
vated, you can switch back to Excel by keying Alt-F11, by
clicking the Excel icon on the left side of the toolbar, or by
selecting the Excel icon on the Windows taskbar.
 The VBE layout harkens back to pre-Ribbon versions of
Office, which had a menu and toolbar at the top, a Project
Explorer window on the upper left, a Properties window on
the lower left, and the main area called the Code Window.

Record VBA macros:
A big bang for a pocket-change investment
 As we use spreadsheets in our daily chemical engineer-
ing work, we inevitably come across multistep procedures
that we repeat again and again. In many cases, we can record

p Figure 2. The complete headings in cells B2 and C2 — Pressure (kPa)
and Flow Rate (Lpm) — are longer than the widths of columns B and C.

t Figure 3. After you select the Record
Macro command button in the Code group
of the Developer tab of the Ribbon or
the Record Macro icon on the left of the
status bar below the spreadsheet, VBA
will record your actions in the spreadsheet
environment.

p Figure 4. Be careful when assigning shortcut keys to macros because
they will supersede any built-in shortcut key definitions. Most uppercase
shortcut keys are available, but avoid F, O, and P. Many lowercase shortcut
keys are already defined, although the e, j, l, m, q, and t keys are generally
available. Third-party add-in software might occupy other shortcut keys.

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

CEP June 2017 www.aiche.org/cep 41

a macro to automate these simple but repetitive procedures.
Each of us will have our own examples, but here are four
of mine:

• centering and wrapping column headings that are wider
than the numerical entries below them

• right-justifying a cell entry one space from the border
• transferring a label as the name on the adjacent cell to

the right
• resetting the zoom setting of new, blank worksheets

to 150%.
 Consider the first repetitive task: I would like to center
and wrap two adjacent headings that exceed their column
width (Figure 2). To do this, select the two cells and then
activate the Macro Recorder — either by clicking the com-
mand icon in the Code group of the Developer tab of the
Ribbon or by clicking the Record Macro icon on the left of
the status bar below the spreadsheet (Figure 3). Once acti-
vated, the Record Macro dialog box is superimposed over
the spreadsheet.
 Enter into the Record Macro dialog box a name for the
macro and a shortcut key (Figure 4). Storing the macro in
the Personal Macro Workbook makes it available to what-
ever Excel workbook is open. If you have not yet stored
anything in the Personal Macro Workbook, it will be created
for you when you record your first macro to be stored there.
Finally, you should enter a few words in the Description
field related to the function of the macro.
 Click OK to turn on the recorder. From this point on,
VBA observes what you do in the spreadsheet environment
and attempts to compose code to replicate it. To center and
wrap the text in the cells of interest, right-click the selected
cells and select Format Cells. Navigate to the Alignment tab
and in the dialog box select Center from the Horizontal and
Vertical drop-down menus and 0 from the Indent menu, and
check the Wrap text box, as shown in Figure 5. Click OK
to format the cells as shown in Figure 6. To stop recording,
select the Stop Recording command icon on the Ribbon or
the Stop Recording square on the Status Bar, which is next
to the Ready status (Figure 7).
 Test the macro by typing another lengthy label,
selecting the cell containing the label, and keying
the shortcut combination. If the macro does not
work, examine the VBA code. In fact, it is not a bad
idea to look at the code anyway to see an example
of the code or check for errors.
 Key Alt-F11 to switch to the VBE. Double-click
the code module in the Project Explorer under the
Project associated with the Personal Macro work-
book (PERSONAL.XLSB). The Code Window will
open and should be populated with code (Figure 8).
 If there are errors, they will probably show up
as extra lines. The Sub (i.e., Subroutine Procedure)

presented in Figure 8 is evidence of the relative readability
of VBA program code. Comments are in green and set off
by a leading apostrophe. The nine statements inside the With
Selection ... End With structure refer to the options on the

p Figure 5. Under the Alignment tab of the Format Cell window, specify
Center for both Horizontal and Vertical text alignment and check the Wrap
text box.

t Figure 6. The selections
made in the Format Cell
window format the column
headings so they are easier
to read.

u Figure 7. When you are ready to stop
recording your macro, select the Stop
Recording command icon on the Ribbon
or the Stop Recording square on the
Status Bar (next to the Ready status).

t Figure 8. Add a comment
in your Sub by starting a line
with an apostrophe. The text
automatically turns green
and will not be interpreted as
code.

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

42 www.aiche.org/cep June 2017 CEP

Computational Methods

Alignment tab of the Format Cells dialog window. Selec-
tion refers to the cells that are selected, which identifies
the object to which the code applies. Each item following
a period is a property associated with that object, which is
assigned a value via the equals sign.
 Coding the word Selection in front of each period of the
nine lines, absent the With Selection … End With, accom-
plishes the same thing as the With Selection ... End With
statement; however, the latter is more concise.
 Only the first three lines of the macro correspond to
the selections made on the Alignment tab. The last six are
default values that can be deleted to make the code more
compact and easy to understand.
 This short time investment produces a simple macro that
will likely be used dozens, perhaps hundreds, of times. Simi-
lar short macros can just as easily be recorded and provide a
big payback.

User-defined VBA functions:
Build your arsenal of engineering formulas
 Chemical engineers occasionally use formulas for
calculations that are relatively complex. These formulas
can be incorporated into a user-defined VBA function
(UDF). A UDF:

• allows the formula to be invoked in numerous locations
on the spreadsheet without you re-entering or copying it

• improves reliability because it ensures only one version
of the formula is used in the spreadsheet

• provides the ability to package the UDF into an add-in,
possibly with other UDFs, and share the add-in with a work
group or company organization (even commercialize it) to
improve consistency of application.
 To see how formulas can be incorporated into UDFs,
consider the volume of liquid in a horizontal, cylindrical

q Figure 12. Comments can help
make your UDF more easily under-
stood by others, and they can help
remind you of your reasoning when
you revisit the code.

p Figure 9. Create a user-defined function (UDF) to calculate the volume
of liquid in this horizontal cylindrical tank with hemispherical sides.

t Figure 11. The blank code
window in the VBE is where you
enter your code.

p Figure 10. After you select your project in the Project Explorer window,
select Insert and Module on the VBE menu to open a blank Code Window.

L

h Vliq

D

D
2

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

CEP June 2017 www.aiche.org/cep 43

tank with hemispherical ends (Figure 9). The total volume
of liquid in the tank (Vliq) can be calculated by summing the
volume of liquid in the cylindrical portion of the tank (Vcyl)
and the volume of liquid in the hemispherical ends (Vsph) as
defined by:

where R is the radius of the tank, D is the diameter of the
tank, h is the depth of the liquid in the tank, and L is the
length of the cylindrical portion of the tank.
 To create a UDF with the format =TankVol(h, D, L),
enter code directly into the VBE. Select the appropriate
project corresponding to the Excel Workbook in the Project
Explorer window, and then select Insert and Module on
the VBE menu (Figure 10) to open a blank Code Window
(Figure 11).
 Figure 12 shows the Code Window populated with the
appropriate code. A good practice is to include ample com-
ments to describe the calculation. The next step is to test the
function on the spreadsheet (Figure 13).
 Other formulas can be implemented in UDFs but might
require program structure, such as decisions (If statements)
and iterations (For-Next and Do-Loop statements). Books

that cover the details of writing VBA code are available; a
good one is Excel 2016 Power Programming with VBA by
M. Alexander and D. Kusleika (John Wiley & Sons, Inc.,
Feb. 2016).

Streamline and format data:
Save time and improve reliability

Data sets often need to be cleaned up and formatted to
improve their readability and usefulness. If you find yourself
doing this repeatedly, consider developing a VBA program
to streamline the effort.

A small-scale example of data in need of formatting
is the output of Excel’s Analysis Toolpak feature. The
Analysis Toolpak has a Descriptive Statistics option that
generates a statistical analysis of a data set. If you use the
Toolpak option for Descriptive Statistics for a small set of
data (Figure 14) and designate its output for a separate, new
worksheet, the Toolpak provides a table summarizing an
analysis of the data set such as in Figure 15.

To make this table more readable manually, we would
adjust column widths and number formats, and we could
record a macro to see the code composed by VBA for these
operations (Figure 16). I cleaned up the code in Figure 16
by removing superfluous statements, and I specified a par-
ticular numeric format for each cell. This would be a limita-
tion for a generic macro but would be sufficient if the data
sets we treat are consistent. Adding code to display a certain
number of significant figures, independent of the scale of

u Figure 15. Excel’s Analysis
Toolpak includes a Descriptive
Statistics option, which provides
statistics about data sets in the form
of a table.

t Figure 14. We could analyze this set of data manu-
ally. However, Excel has an automated analysis feature
that is particularly useful for large sets of data.

u Figure 13. The
variables h, D, and L are
the necessary input for
the function =TankVol().
In this spreadsheet, the
cells have been renamed
h, D, and L, rather than
retaining their original
coordinate names (i.e.,
B2, B3, B4).

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

44 www.aiche.org/cep June 2017 CEP

Computational Methods

the numbers, requires
more effort.

Another elementary
application of VBA is to
remove blank cells from
a set of data. Compress-
ing a data set with a few
blank cells (Figure 17)
requires a VBA Sub with
a little program structure
(Figure 18).

User interfaces:
Applications to be
used by others

If you would like to develop a spreadsheet to be used by
others, such as operators and technicians, consider creat-
ing a user interface as part of your application. An efficient
and well-designed spreadsheet interface for a common
calculation that must be performed by those who are not
spreadsheet- savvy can be worth the effort.

A user interface (Figure 19) requires the design of
objects, such as forms, message boxes, input boxes, but-
tons, and switches, which are generally linked to VBA event
handler code segments. Designing and programming these
applications takes time and the learning curve is steeper
than, for example, recording a macro.

Spreadsheets can also be integrated with other software
packages, including math software (e.g, Matlab), process
simulators (e.g., Aspen Plus), optimizers (e.g., What’sBest!),

t Figure 16. The number
of decimal places for each
cell in the range can be
individually specified in the
code (top).

p Figure 17. VBA
can condense data
sets that contain
blank cells.

q Figure 18. You can discover statements like .Delete Shift:=xlUp by
recording a short macro to delete a cell. You can use this information to
then write a custom Sub.

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

CEP June 2017 www.aiche.org/cep 45

and data acquisition software (e.g., LabView, distributed
control systems [DCS]). It is also possible to link spread-
sheets with programs written in other programming lan-
guages, such as C/C++ or Fortran. In most cases, the bridge
between Excel and these other packages is VBA.
 Some software vendors provide Excel-based add-ins that
facilitate intercommunication, such as the Excel Link add-in
for Matlab and the Pi software from OSI. However, for the
most flexibility and power, it is frequently necessary to write
object-oriented VBA code.

Concluding thoughts
 Most chemical engineers will not be able to carve out
the time to get heavily involved in VBA application devel-
opment. However, it is well within the reach of practicing
professionals to take advantage of the small-scale features
of VBA, such as macros and user-defined functions, and
reap substantial benefits in time-savings and spreadsheet
reliability. If you haven’t tried these features, venture
into the VBA world to see what it can offer.

DAVID E. CLOUGH, PhD, has been on the faculty of the Dept. of Chemical
and Biological Engineering at the Univ. of Colorado Boulder since 1975
(Email: david.clough@colorado.edu). He conducts research in the auto-
matic control of a variety of processes, most recently of solar-thermal
reactors. At the university, he teaches courses in instrumentation and
control, applied statistics, and engineering computing. Since 1989,
he has taught well over 100 offerings of short courses in spreadsheet
problem-solving and VBA programming for AIChE. His short courses
have been among the most popular offered by AIChE and continue in
both in-person and online format. For more than two decades, his
co-instructor was Miles Julian of the DuPont Co., who is now retired.

p Figure 19. Selecting the Solve Case button produces the desired output,
which can appear in a Message Box or be placed on a Worksheet.

WORK
SMARTER WITH
SPREADSHEET
COURSES
FROM AIChE®
ACADEMY.
It’s a fact: using Excel® can help speed
the calculations chemical engineers
regularly make. Yet many users aren’t
taking advantage of the powerful tools
and programming capabilities built into
this widely-used application. Make
sure you’re getting the most out of
Excel with AIChE® courses. Whether
you’re interested in built-in functionality
or learning how to program… use
these courses from AIChE Academy to
supply the knowledge you need.

Both courses are available online
(eLearning) and in-person (Public Course).
Pick the learning format that’s best for you.
To register, visit www.aiche.org/academy
and search keyword: Spreadsheet.

CHOOSE FROM TWO COURSES
DESIGNED TO MAKE YOU
A MORE PRODUCTIVE
SPREADSHEET USER:

Spreadsheet Problem-Solving for
Chemical Engineers

Excel VBA Programming for
Chemical Engineers

© AIChE 2017 1549-17 • 0517

CEP

Copyright © 2017 American Institute of Chemical Engineers (AIChE)

