We are aware of an issue with certificate availability and are working diligently with the vendor to resolve. The vendor has indicated that, while users are unable to directly access their certificates, results are still being stored. Certificates will be available once the issue is resolved. Thank you for your patience.

Metabolically Engineered Escherichia coli for Renewable Production of a Three Carbon Diamine, 1,3-Diaminopropane

Bio-based production of chemicals is important for sustainable chemical industry. Here, Escherichia coli is metabolically engineered to produce 1,3-diaminopropane (1,3-DAP), a monomer for polyamide. Comparison of heterologous C4 and C5 pathways for 1,3-DAP production by in silico flux analysis revealed that the C4 pathway employing Acinetobacter baumannii dat and ddc genes, encoding 2-ketoglutarate 4-aminotransferase and L-2,4-diaminobutanolate decarboxylase, respectively, was more efficient. In a strain having feedback resistant aspartokinases, the ppc and aspC genes were overexpressed to increase flux towards 1,3-DAP synthesis. Also, knocking out pfkA was found to increase 1,3-DAP production by applying 128 synthetic small RNAs. Overexpression of the ppc and aspC genes in the pfkA deleted strain resulted in even higher production of 1,3-DAP. Fed-batch fermentation of the final engineered E. coli strain allowed production of 13 g/L of 1,3-DAP in a glucose minimal medium. [This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557).]