(159a) Environmental Impact of Mining | AIChE

(159a) Environmental Impact of Mining

Authors 

Asante, R. - Presenter, Emarid College
Mining can have adverse effects on surrounding surface and groundwater if protective measures are not taken. The result can be unnaturally high concentrations of some chemicals, such as arsenic, sulfuric acid, and mercury over a significant area of surface or subsurface.[3] Runoff of mere soil or rock debris -although non-toxic- also devastates the surrounding vegetation. The dumping of the runoff in surface waters or in forests is the worst option here. Submarine tailings disposal is regarded as a better option (if the soil is pumped to a great depth).[4] Mere land storage and refilling of the mine after it has been depleted is even better, if no forests need to be cleared for the storage of the debris. There is potential for massive contamination of the area surrounding mines due to the various chemicals used in the mining process as well as the potentially damaging compounds and metals removed from the ground with the ore. Large amounts of water produced from mine drainage, mine cooling, aqueous extraction and other mining processes increases the potential for these chemicals to contaminate ground and surface water. In well-regulated mines, hydrologists and geologists take careful measurements of water and soil to exclude any type of water contamination that could be caused by the mine's operations. The reducing or eliminating of environmental degradation is enforced in modern American mining by federal and state law, by restricting operators to meet standards for protecting surface and ground water from contamination. This is best done through the use of non-toxic extraction processes as bioleaching. If the project site becomes nonetheless polluted, mitigation techniques such as acid mine drainage(AMD) need to be performed.

The five principal technologies used to monitor and control water flow at mine sites are diversion systems, containment ponds, groundwater pumping systems, subsurface drainage systems, and subsurface barriers. In the case of AMD, contaminated water is generally pumped to a treatment facility that neutralizes the contaminants.[5]

A 2006 review of environmental impact statements found that "water quality predictions made after considering the effects of mitigations largely underestimated actual impacts to groundwater, seeps, and surface water".[6]