(172a) Simulation of Heterogeneously Cs-Doped Heteropolyacid Catalyzed Transesterification for Biodiesel Production | AIChE

(172a) Simulation of Heterogeneously Cs-Doped Heteropolyacid Catalyzed Transesterification for Biodiesel Production


Sadhukhan, J. - Presenter, The University of Manchester
Xu, M. - Presenter, The University of Manchester
Wilson, K. - Presenter, University of York

Biodiesel, an alternative diesel fuel, has become more attractive recently because of its environmental benefits and the increase in the petroleum price. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst could solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation. A kinetic model based on a three-step ?Eley-Rideal' type of mechanism in the liquid phase is used in the simulation of reaction. The effect of diffusion inside a catalyst pellet is taken into account because of the mass transport inside the catalyst particles. This multi-disciplinary research offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.

Keywords: biodiesel production, heterogeneous catalysts, internal diffusion, reaction kinetics


This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.


Do you already own this?



AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00